Spark学习笔记2——RDD(上)

笔记摘抄自 [美] Holden Karau 等著的《Spark快速大数据分析》

RDD是什么?

弹性分布式数据集(Resilient Distributed Dataset,简称 RDD)

  • Spark 的核心概念
  • 一个不可变的分布式对象集合
  • 每个 RDD 都被分为多个分区运行在集群的不同节点上
  • RDD 可以包含 Python、Java、Scala 中任意类型的对象(可以自定义)

在 Spark 中,对数据的所有操作不外乎 创建 RDD转化已有 RDD 以及 调用 RDD 操作 进行求值。而在这一切背后,Spark 会自动将 RDD 中的数据分发到集群上,并将操作并行化执行。

例子

创建 RDD 的两种方式:

  • 读取一个外部数据集
  • 驱动器程序里分发驱动器程序中的对象集合(比如 list 和 set)

这里通过读取文本文件作为一个字符串 RDD:

>>> lines = sc.textFile("README.md")

RDD 的两种操作:

  • 转化操作(transformation):由一个RDD 生成一个新的RDD,例如筛选数据
  • 行动操作(action):对RDD 计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(如HDFS)中

调用转化操作 filter() :

>>> pythonLines = lines.filter(lambda line: "Python" in line)

调用 first() 行动操作 :

>>> pythonLines.first()
u'high-level APIs in Scala, Java, Python, and R, and an optimized engine that'

@Notice

  • 惰性计算”:RDD 只有在进行第一个 行动操作 时才会被计算[1]
  • 持久化”:RDD默认会在每次行动操作时重新计算[2],如果想要在多个行动操作中重复使用同一个 RDD ,需要对该 RDD 进行 “持久化”

把RDD 持久化[3]到内存中

>>> pythonLines.persist
<bound method PipelinedRDD.persist of PythonRDD[3] at RDD at PythonRDD.scala:53>
>>> pythonLines.count()
3
>>> pythonLines.first()
u'high-level APIs in Scala, Java, Python, and R, and an optimized engine that'

创建 RDD

并行化方式

把程序中一个已有的集合传给 SparkContext 的 parallelize() 方法,这种方式需要把整个数据集先放到一台机器的内存中,故不常用

JavaRDD<String> lines = sc.parallelize(Arrays.asList("pandas", "i like pandas"));

读取外部数据集方式

JavaRDD<String> lines = sc.textFile("/path/to/README.md");

RDD 操作

转化操作

RDD 的转化操作是返回一个新的RDD 的操作,比如 map() 和 filter()

例程(Java)

展示日志文件中所有错误记录

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function; import java.util.List; public class CountError {
public static void main(String[] args) {
SparkConf sparkConf = new SparkConf().setAppName("CountError");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
JavaRDD<String> log = javaSparkContext.textFile(args[0]);
JavaRDD<String> errorsRDD = log.filter(
new Function<String, Boolean>() {
public Boolean call(String x) {
return x.contains("ERROR");
}
});
List<String> errors = errorsRDD.collect();
for (String output : errors) {
System.out.println(output);
}
javaSparkContext.stop();
}
}

日志文件内容

INFO:everything gonna be ok...
ERROR:something is wrong!
INFO:everything gonna be ok...
ERROR:something is wrong!
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
ERROR:something is wrong!
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
ERROR:something is wrong!
INFO:everything gonna be ok...
INFO:everything gonna be ok...

运行效果

[root@server1 spark-2.4.4-bin-hadoop2.7]# bin/spark-submit --class CountError ~/SparkTest2.jar ~/SparkTest2.log
...
19/09/10 16:33:10 INFO DAGScheduler: Job 0 finished: collect at CountError.java:20, took 0.423698 s
ERROR:something is wrong!
ERROR:something is wrong!
ERROR:something is wrong!
ERROR:something is wrong!
...

例程(Python)

>>> lines = sc.textFile("/root/SparkTest2.log")
>>> errorsRDD = lines.filter(lambda lines: "ERROR" in lines)
>>> infoRDD = lines.filter(lambda lines: "INFO" in lines)
>>> totalRDD = errorsRDD.union(infoRDD)
>>> lines.count()
21
>>> errorsRDD.count()
4
>>> infoRDD.count()
17
>>> totalRDD.count()
21

@Notice

  • 转化操作可以操作任意数量的输入 RDD

  • Spark 会使用谱系图(lineage graph)来记录这些不同 RDD 之间的依赖关系,以此按需计算每个 RDD

@P.s.

​ 也可以依靠谱系图在持久化的RDD 丢失部分数据时恢复所丢失的数据

行动操作

把最终求得的结果返回到驱动器程序,或者写入外部存储系统中的 RDD 操作

上文例程中的 count() 便是一个行动操作,另外还有 take() 、collect() 等操作

下面以 take() 为例,获取 union 后的 totalRDD 的前 10 条

>>> for line in totalRDD.take(10):print line
...
ERROR:something is wrong!
ERROR:something is wrong!
ERROR:something is wrong!
ERROR:something is wrong!
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
INFO:everything gonna be ok...
>>>

@P.s.

程序把RDD 筛选到一个很小的规模单台机器内存足以放下时才可以使用 collect()

惰性求值

RDD 的转化操作都是惰性求值的,在被调用行动操作之前 Spark 不会开始计算

  • 不应该把 RDD 看作存放着特定数据的数据集,而最好把每个 RDD 当作我们通过转化操作构建出来的、记录如何计算数据的 指令列表
  • 把数据读取到 RDD 的操作也同样是惰性的
  • 读取数据的操作也有可能会多次执行


  1. 如果创建 RDD 或转化 RDD 时就把文件中所有的行数都存储起来,会消耗大量存储空间,Spark 了解完整的操作链后,可以只计算结果真正需要的数据,例如行动操作为 first() 则只存储 “README.md” 中第一行 “Python” ↩︎

  2. 如果不这样做也会导致重复创建 RDD 浪费存储空间 ↩︎

  3. 默认存储级别调用 persist() 和 cache() 是一样的 ↩︎

Spark学习笔记2——RDD(上)的更多相关文章

  1. Spark学习笔记3——RDD(下)

    目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...

  2. Spark学习笔记之RDD中的Transformation和Action函数

    总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pys ...

  3. Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)

    Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...

  4. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  5. Spark学习笔记0——简单了解和技术架构

    目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...

  6. Spark学习笔记1——第一个Spark程序:单词数统计

    Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...

  7. Spark学习笔记之SparkRDD

    Spark学习笔记之SparkRDD 一.   基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ①   内存集合和外部存储系统 ②   ...

  8. Spark学习笔记2(spark所需环境配置

    Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...

  9. Spark学习笔记-GraphX-1

    Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报  分类: Spark(8)  版权声明: ...

随机推荐

  1. 123457123457#0#-----com.yuming.YiZhiFanPai01--前拼后广--益智早教游戏记忆翻牌cym

    com.yuming.YiZhiFanPai01--前拼后广--益智早教游戏记忆翻牌cym

  2. hadoop:/bin/bash: /bin/java: No such file or directory

    Stack trace: ExitCodeException exitCode=127 In HADOOP_HOME/libexec/hadoop-config.sh look for the if ...

  3. 项目中学习ReactiveCocoa的使用方法

    一.注册控制器 控制器上的一个属性 @property (weak, nonatomic) IBOutlet UIBarButtonItem *signInBtn; 在 viewDidLoad 方法中 ...

  4. 返回日期格式:2017-12-03T13:58:58.901Z,判断时间间隔 如 “刚刚”,“一分钟前”,“一小时前”等

    后台返回的格式如下: 实现输出如下: 我的处理如下: // 处理数据 2017-11-28T02:41:09.487Z // 请求的时间戳.日期格式按照ISO8601标准表示,并需要使用UTC时间. ...

  5. MySQL函数使用

    1.mysql开启函数功能 MySQL函数不能创建的解决方法 在使用MySQL数据库时,有时会遇到mysql函数不能创建的情况. 出错信息大致类似: ERROR 1418 (HY000): This ...

  6. ElasticSearch文档删除字段

    https://www.cnblogs.com/ljhdo/archive/2017/03/24/4885796.html

  7. Java不写文件,LOAD DATA LOCAL INFILE大批量导入数据到MySQL的实现(转)

    MySQL使用load data local infile 从文件中导入数据比insert语句要快,MySQL文档上说要快20倍左右.但是这个方法有个缺点,就是导入数据之前,必须要有文件,也就是说从文 ...

  8. 详解Nginx中HTTP的keepalive相关配置

    http keepalive在http早期 ,每个http请求都要求打开一个tpc socket连接,并且使用一次之后就断开这个tcp连接.使用keep-alive可以改善这种状态,即在一次TCP连接 ...

  9. hadoop学习之路1--centos7群集安装

    一.              安装centos7 1.  设置硬盘为单文件40G.CPU 2核.内存2G.其他默认. 2.  安装时选择gnome,具备操作界面,并增加hadoop的账号. a)   ...

  10. nginx location 优先级

    location 顺序/优先级:     location = > location 完整路径 > location ^~ 路径 > location ~,~* 正则顺序 > ...