luogu P3773 [CTSC2017]吉夫特
这里的组合数显然要用\(\text{lucas}\)定理来求,所以考虑\(\text{lucas}\)定理的本质,即把\(n,m\)分别拆分成\(p\)进制串\(\{a\}\{b\}\),然后\(\binom{n}{m}\mod p=\prod_i \binom{a_i}{b_i}\mod p\)
这题里\(p=2\),那么最后的\(\binom{n}{m}\)要为\(1\),当且仅当\(m\)的二进制串每一位\(\le n\)二进制串的对应位,这相当于\(n\ \&\)(按位与)\(\ m=m\),这是因为\(\prod_i \binom{a_i}{b_i}\)中,所有\(\binom{a_i}{b_i}\)都要是\(1\),那么如果\(\exists i\ a_i=0,b_i=1\),就会导致\(\binom{a_i}{b_i}=\binom{0}{1}=0\),那么最终的值就是\(0\),所以\(m\)二进制每一位都要\(\le n\)的每一位.要求的实际上是长度\(\ge2\)的子序列\(\{s_1,s_2...s_k\}\),满足\(\forall i\in[1,k-1] s_i\&s_{i+1}=s_{i+1}\),所以可以倒着扫一遍序列,然后对于当前数记\(f_x\)为子序列最后一项的值为\(x\)的方案,转移枚举\(x\)的子集转移
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db long double
using namespace std;
const int N=270000+10,mod=1000000007;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,a[N],f[N],ans;
void ad(int &x,int y){x+=y,x-=x>=mod?mod:0;}
int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
for(int i=n;i;--i)
{
for(int j=a[i];j;j=(j-1)&a[i]) ad(f[a[i]],f[j]);
ad(ans,f[a[i]]);
ad(f[a[i]],1);
}
printf("%d\n",ans);
return 0;
}
luogu P3773 [CTSC2017]吉夫特的更多相关文章
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- P3773 [CTSC2017]吉夫特
传送门 看到组合数在模 $2$ 意义下的乘积,考虑用 $lucas$ 定理把组合数拆开 $lucas$ 告诉我们,$C(n,m)$ 在模 $k$ 意义下的值,相当于 $n,m$ 在 $k$ 进制下每一 ...
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- [CTSC2017]吉夫特
Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}} ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- bzoj千题计划247:bzoj4903: [Ctsc2017]吉夫特
http://uoj.ac/problem/300 预备知识: C(n,m)是奇数的充要条件是 n&m==m 由卢卡斯定理可以推出 选出的任意相邻两个数a,b 的组合数计算C(a,b)必须是奇 ...
- BZOJ4903: [Ctsc2017]吉夫特
传送门 可以发现,\(\binom{n}{m}\equiv 1(mod~2)\) 当且仅当 \(m~and~n~=~m\) 即 \(m\) 二进制下为 \(n\) 的子集 那么可以直接写一个 \(3^ ...
随机推荐
- P2308 添加括号
P2308 添加括号 题解 一看这题---我能AC 看完这题---我要换题 这题第二问其实就是一个链的石子合并,也就是不用处理环 所以一三问怎么处理??? 数组 mid[ i ][ j ] 记录区间 ...
- TensorFlow Object Detection API —— 制作自己的模型
https://blog.csdn.net/qq_24474463/article/details/81530900 (t20190518) luo@luo-All-Series:~/MyFile/T ...
- kubectl 之 patch 命令
patch命令 kubectl patch — Update field(s) of a resource using strategic merge patch Synopsis kubectl p ...
- eclipse、MyEclipse 修改字符集和JDK
eclipse 中UTF-8设置 1.windows->Preferences 打开"首选项"对话框: 2.然后,general->Workspace,右 侧Tex ...
- JAVA 基础编程练习题26 【程序 26 求星期】
26 [程序 26 求星期] 题目:请输入星期几的第一个字母来判断一下是星期几,如果第一个字母一样,则继续 判断第二个字母. 程序分析:用情况语句比较好,如果第一个字母一样,则判断用情况语句或 if ...
- 二进制安装k8s-单个master节点、两个node--修改版--有个错误:好多地方确少APISERVER
centos7.4安装k8s-.11版本,二进制 安装 配置系统相关参数 如下操作在所有节点操作 # 临时禁用selinux # 永久关闭 修改/etc/sysconfig/selinux文件设置 s ...
- 深入理解channels - kavya Joshi
From: 翻译blog地址 作者:大桥下的蜗牛 这是GopherCon 2017大会上,go开发专家 kavya Joshi 的一篇关于 channel 的演讲,讲的通俗易懂. Understand ...
- 使用Optioanl优雅的处理空值
业务中的空值 场景 存在一个UserSearchService用来提供用户查询的功能: public interface UserSearchService{ List listUser(); Use ...
- Tomcat 部署web 项目
转载,原文链接: https://www.cnblogs.com/ysocean/p/6893446.html 侵删 回到顶部 3.Tomcat 的目录结构 回到顶部 4.部署项目的第一种方法(项目直 ...
- Hadoop之HDFS客户端操作
1. HDFS 客户端环境准备 1.1 windows 平台搭建 hadoop 2.8.5 2. 创建Maven工程 # pom.xml <dependencies> <depend ...