题目描述

There is an array of length n, containing only positive numbers.
Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than 1 or state that it is impossible.
You should notice that if you want to add one number by 1, you need to add all numbers by 1 at the same time.

输入

The first line of input file contains an integer T (1≤T≤20), describing the number of test cases.
Then there are 2×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (1≤n≤105) described above.
The second line of that contains n integers ranging in [1,109].

输出

You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first. Then output exactly one integer representing the answer. If it is impossible, print -1 instead.

样例输入

复制样例数据

3
1
2
5
2 5 9 5 7
5
3 5 7 9 11

样例输出

Case 1: 0
Case 2: -1
Case 3: 1

提示

Sample 1: You do not need to do anything because its gcd is already larger than 1.
Sample 2: It is impossible to obtain that array.
Sample 3: You just need to add all number by 1 so that gcd of this array is 2.

  题目大意:每次操作都给数组的所有数同时+1,问最少操作几次使得所有数的gcd大于1,或者压根不能使得所有数的gcd大于1。

  思路类似于CF的Neko does Maths CodeForces - 1152C 数论欧几里得,不过这题的k是对n个数而言,但思路是一样的。

  假设b>=a,我们知道gcd(a+k,b+k)是b-a的因子,那么要想知道所有都+k能不能有gcd>1,那就是得看两两数做差,看他们的差的gcd是不是大于1,但是两两做差O(n2)肯定不行。而我们把所有数排序,然后求相邻两个数的差的gcd,就可以了。因为,像三个数a,b,c,他们的差分别是d1,d2,如果d1和d2不互质,那么d1和d1+d2自然也不互质。得出gcd,我们就枚举gcd的因子就好了。

 #include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N];
int main()
{
int t=,T,n;
scanf("%d",&T);
while(t<=T)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int g=,ans;
for(int i=;i<n;i++)//并不需要去重,因为gcd(0,x)=x
g=__gcd(g,a[i]-a[i-]);
if(g==)
ans=-;
else if(g==)//都是同一个数的时候得特判
{
if(a[]==)
ans=;
else
ans=;
}
else
{
ans=(g-a[]%g)%g;
for(int i=;i*i<=g;i++)//枚举因子,找最小答案
if(g%i==)
{
ans=min(ans,(i-a[]%i)%i);
ans=min(ans,(g/i-a[]%(g/i))%(g/i));
}
}
printf("Case %d: %d\n",t++,ans);
}
return ;
}

gcd

2018CCPC桂林站G Greatest Common Divisor的更多相关文章

  1. CCPC2018 桂林 G "Greatest Common Divisor"(数学)

    UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...

  2. 2018CCPC桂林站JStone Game

    题目描述 Alice and Bob are always playing game! The game today is about taking out stone from the stone ...

  3. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  4. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  5. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  6. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  7. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  8. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  9. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

随机推荐

  1. DP+线段树维护矩阵(2019牛客暑期多校训练营(第二场))--MAZE

    题意:https://ac.nowcoder.com/acm/contest/882/E 给你01矩阵,有两种操作:1是把一个位置0变1.1变0,2是问你从第一行i开始,到最后一行j有几种走法.你只能 ...

  2. 落网数据库简单查询接口 caddy+php7+mongodb

    落网数据库简单查询接口 一个简单的DEMO,使用了caddy + php7 + mongodb 数据库&接口设计 来自 https://github.com/Aedron/Luoo.spide ...

  3. Linux 安装MySQL流程

    1. yum -y install wegt 2. yum -y install vim 3. 下载MySQL的repo源 1. wget http://repo.mysql.com/mysql-co ...

  4. 系统学习机器学习之神经网络(三)--GA神经网络与小波神经网络WNN

    系统学习机器学习之神经网络(三)--GA神经网络与小波神经网络WNN 2017年01月09日 09:45:26 Eason.wxd 阅读数 14135更多 分类专栏: 机器学习   1 遗传算法1.1 ...

  5. 怎样初始化XMLHttpRequest实例对象xhr

    xhr.open() 接收5个参数, 用于初始化一个http请求, 它接收5个参数: 1. method: 请求类型; 2. url: 请求的url; 3. async: 是否为异步, 默认为true ...

  6. SMTP实现发送邮箱2(封装版)

    SMTP.h #ifndef __SMTP_H__ //避免重复包含 #define __SMTP_H__ #include <iostream> #include <list> ...

  7. Entity的约束

    在DBContext的OnModelCreating()方法中调用上面的那个类 1.Infrastruture的Database文件夹建立Entityconfiguretions的文件夹 2.MyCo ...

  8. PS笔记

    PS 笔记 PS调色人像步骤-by李涛: 色阶- 追饱和度- 色彩平衡-  中间调不动,阴影偏青,偏绿,偏蓝  , 高光偏红,偏一点蓝 锐化 1. 冷暖对比-by狼族摄影:   高光和阴影设置为偏青色 ...

  9. vue打包后找不到资源路径问题

    问题描述: 使用webpack打包vue项目后,前后端联调无法找到资源 解决方案: 一. 改为相对路径,去除axios中地址的第一个“/” onProxyReq: function (proxyReq ...

  10. LLVM的RTTI特性

    本文思路来源于http://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html,叙述有不同,望谅解,希望能从其他方面帮助大家了解C++语言的底层实现. 背景 在LLV ...