题目描述

There is an array of length n, containing only positive numbers.
Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than 1 or state that it is impossible.
You should notice that if you want to add one number by 1, you need to add all numbers by 1 at the same time.

输入

The first line of input file contains an integer T (1≤T≤20), describing the number of test cases.
Then there are 2×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (1≤n≤105) described above.
The second line of that contains n integers ranging in [1,109].

输出

You should output exactly T lines.
For each test case, print Case d: (d represents the order of the test case) first. Then output exactly one integer representing the answer. If it is impossible, print -1 instead.

样例输入

复制样例数据

3
1
2
5
2 5 9 5 7
5
3 5 7 9 11

样例输出

Case 1: 0
Case 2: -1
Case 3: 1

提示

Sample 1: You do not need to do anything because its gcd is already larger than 1.
Sample 2: It is impossible to obtain that array.
Sample 3: You just need to add all number by 1 so that gcd of this array is 2.

  题目大意:每次操作都给数组的所有数同时+1,问最少操作几次使得所有数的gcd大于1,或者压根不能使得所有数的gcd大于1。

  思路类似于CF的Neko does Maths CodeForces - 1152C 数论欧几里得,不过这题的k是对n个数而言,但思路是一样的。

  假设b>=a,我们知道gcd(a+k,b+k)是b-a的因子,那么要想知道所有都+k能不能有gcd>1,那就是得看两两数做差,看他们的差的gcd是不是大于1,但是两两做差O(n2)肯定不行。而我们把所有数排序,然后求相邻两个数的差的gcd,就可以了。因为,像三个数a,b,c,他们的差分别是d1,d2,如果d1和d2不互质,那么d1和d1+d2自然也不互质。得出gcd,我们就枚举gcd的因子就好了。

 #include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N];
int main()
{
int t=,T,n;
scanf("%d",&T);
while(t<=T)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int g=,ans;
for(int i=;i<n;i++)//并不需要去重,因为gcd(0,x)=x
g=__gcd(g,a[i]-a[i-]);
if(g==)
ans=-;
else if(g==)//都是同一个数的时候得特判
{
if(a[]==)
ans=;
else
ans=;
}
else
{
ans=(g-a[]%g)%g;
for(int i=;i*i<=g;i++)//枚举因子,找最小答案
if(g%i==)
{
ans=min(ans,(i-a[]%i)%i);
ans=min(ans,(g/i-a[]%(g/i))%(g/i));
}
}
printf("Case %d: %d\n",t++,ans);
}
return ;
}

gcd

2018CCPC桂林站G Greatest Common Divisor的更多相关文章

  1. CCPC2018 桂林 G "Greatest Common Divisor"(数学)

    UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...

  2. 2018CCPC桂林站JStone Game

    题目描述 Alice and Bob are always playing game! The game today is about taking out stone from the stone ...

  3. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  4. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  5. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  6. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  7. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  8. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  9. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

随机推荐

  1. 级联-city

    <!DOCTYPE html><html> <head>  <meta charset="UTF-8">  <title> ...

  2. pt-online-schema-change使用

    MySQL ddl 的问题现状 在 运维mysql数据库时,我们总会对数据表进行ddl 变更,修改添加字段或者索引,对于mysql 而已,ddl 显然是一个令所有MySQL dba 诟病的一个功能,因 ...

  3. 【leetcode】153. 寻找旋转排序数组中的最小值

    题目链接:传送门 题目描述 现有一个有序数组,假设从某个数开始将它后面的数按顺序放到了数组前面.(即 [0,1,2,4,5,6,7] 可能变成 [4,5,6,7,0,1,2]). 请找出数组中的最小元 ...

  4. Python 运算符与数据类型

    Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...

  5. C# 32位系统与64位系统调用不同的DLL文件

    string dll32 = System.Windows.Forms.Application.StartupPath + @"\System.Data.SQLite-32.DLL" ...

  6. SqlServer2008 跨服务器同步数据

    最近工作中需要跨服务器同步数据,在数据库DB1中的表T1插入数据,同时触发T1的触发器(这里暂不讨论触发器的效率问题),向另一台服务器DB2中的相同的一张表T2插入数据,查看了一些资料说, 需要打开D ...

  7. EF Core的级联删除

    级联删除由DeleteBehavior的枚举值来设置: 行为名称 对内存中的依赖项/子项的影响 对数据库中的依赖项/子项的影响 Cascade 删除实体 删除实体 ClientSetNull 外键属性 ...

  8. 函数——箭头函数&自执行函数(二)

    一.箭头函数是在es6中添加的一种规范,它相当于匿名函数,简化了函数的定义. 1.语法 a.function用var,let,cost来表示: b.参数要写在第一个等号后面:   参数有多个,需要加一 ...

  9. “System.Reflection.TargetInvocationException”类型的未经处理的异常在 mscorlib.dll 中发生

    异常汇总:http://www.cnblogs.com/dunitian/p/4523006.html#signalR 第一种,权限不够,在项目运行的时候弹出==>解决方法:以管理员权限运行vs ...

  10. 【TCP】连接管理

    TCP连接管理   本节将介绍一条TCP连接是如何建立和拆除的.此处假设客户机A上面的一个进程想要和服务 器B上的一个进程建立一条TCP连接.本文前面介绍的是比较正常的连接和拆除,特殊的会在后面介绍. ...