2018CCPC桂林站G Greatest Common Divisor
题目描述
Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd) is larger than 1 or state that it is impossible.
You should notice that if you want to add one number by 1, you need to add all numbers by 1 at the same time.
输入
Then there are 2×T lines, with every two lines representing a test case.
The first line of each case contains a single integer n (1≤n≤105) described above.
The second line of that contains n integers ranging in [1,109].
输出
For each test case, print Case d: (d represents the order of the test case) first. Then output exactly one integer representing the answer. If it is impossible, print -1 instead.
样例输入
复制样例数据
3
1
2
5
2 5 9 5 7
5
3 5 7 9 11
样例输出
Case 1: 0
Case 2: -1
Case 3: 1
提示
Sample 1: You do not need to do anything because its gcd is already larger than 1.
Sample 2: It is impossible to obtain that array.
Sample 3: You just need to add all number by 1 so that gcd of this array is 2.
题目大意:每次操作都给数组的所有数同时+1,问最少操作几次使得所有数的gcd大于1,或者压根不能使得所有数的gcd大于1。
思路类似于CF的Neko does Maths CodeForces - 1152C 数论欧几里得,不过这题的k是对n个数而言,但思路是一样的。
假设b>=a,我们知道gcd(a+k,b+k)是b-a的因子,那么要想知道所有都+k能不能有gcd>1,那就是得看两两数做差,看他们的差的gcd是不是大于1,但是两两做差O(n2)肯定不行。而我们把所有数排序,然后求相邻两个数的差的gcd,就可以了。因为,像三个数a,b,c,他们的差分别是d1,d2,如果d1和d2不互质,那么d1和d1+d2自然也不互质。得出gcd,我们就枚举gcd的因子就好了。
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=;
int a[N];
int main()
{
int t=,T,n;
scanf("%d",&T);
while(t<=T)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&a[i]);
sort(a,a+n);
int g=,ans;
for(int i=;i<n;i++)//并不需要去重,因为gcd(0,x)=x
g=__gcd(g,a[i]-a[i-]);
if(g==)
ans=-;
else if(g==)//都是同一个数的时候得特判
{
if(a[]==)
ans=;
else
ans=;
}
else
{
ans=(g-a[]%g)%g;
for(int i=;i*i<=g;i++)//枚举因子,找最小答案
if(g%i==)
{
ans=min(ans,(i-a[]%i)%i);
ans=min(ans,(g/i-a[]%(g/i))%(g/i));
}
}
printf("Case %d: %d\n",t++,ans);
}
return ;
}
gcd
2018CCPC桂林站G Greatest Common Divisor的更多相关文章
- CCPC2018 桂林 G "Greatest Common Divisor"(数学)
UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...
- 2018CCPC桂林站JStone Game
题目描述 Alice and Bob are always playing game! The game today is about taking out stone from the stone ...
- upc组队赛17 Greatest Common Divisor【gcd+最小质因数】
Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- greatest common divisor
One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...
- 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)
定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...
- 845. Greatest Common Divisor
描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...
- hdu 5207 Greatest Greatest Common Divisor 数学
Greatest Greatest Common Divisor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...
- LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45
1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...
随机推荐
- linux下如何查看一个服务所在的安装路径?
当接手一个不是自己维护的linux服务器,我们常常会想要看看该服务器上是否安装了某个服务,这个服务安装的路径在哪? redis 是开发过程中常常会用到的一个服务,我这里就以这个服务为例,进行说明. 1 ...
- tomcat 发布的web项目不在webapps目录下
双击服务器(如果服务器再启动,请停止并删除里面的项目,再clean一下), server location 选择use tomcat installation: deploy path 改为webap ...
- python numpy 删除array指定位置的元素
如图:设计一个数组或者tuple,其中的元素是True或False,那么在False位置上的元素就会被删掉 索引的元素还可以是int型的数,这时候就代表,将原来的数组中指定位置的数放在当前的位置,且索 ...
- 关于工作单元模式——工作单元模式与EF结合的使用
工作单元模式往往和仓储模式一起使用,本篇文章讲到的是工作单元模式和仓储模式一起用来在ef外面包一层,其实EF本身就是工作单元模式和仓储模式使用的经典例子,其中DbContext就是工作单元,而每个Db ...
- 阅读文章《DDD 领域驱动设计-如何 DDD?》的阅读笔记
文章链接: https://www.cnblogs.com/xishuai/p/how-to-implement-ddd.html 文章作者: 田园里的蟋蟀 首先感谢作者写出这么好的文章. 以下是我的 ...
- windows连接远程服务器报错'SSH' 不是内部或外部命令,也不是可运行的程序 或批处理文件 解决方案
网上在windows下连接远程服务器的步骤如下: 1.打开cmd命令行窗口 2.输入cd ~/.ssh,进入c盘下的.ssh文件 3.输入“ssh root@远程服务器的ip地址”连接远程服务器, b ...
- CompletionService异步非阻塞获取并行任务执行结果
第1部分 问题引入 <Java并发编程实践>一书6.3.5节CompletionService:Executor和BlockingQueue,有这样一段话: "如果向Execut ...
- sql 存储过程笔记3
16:22 2014/1/26一.定义变量--简单赋值declare @a int set @a = 5 print @a --使用select语句赋值declare @user1 nvarchar( ...
- Django 开发相关知识 整理
前言 前端ajax HTTP请求头 ajax上传文件 jsonp跨域 URL 设计 分发 url参数编码 反向生成url 视图 request对象 POST url信息 视图返回值 HttpRespo ...
- 如何准备Java的高级技术面试
一. 换位思考下,如果你面试官,你会怎么做 只能通过简历和面试来衡量,别无他法.如果某位大牛确认能力很行,但面试时无法充分地自证能力,那对不起了,过不了,现实就这样. 如果面试官由于能力不行,招进来一 ...