C++中使用OPENCV对深度学习的特征图进行可视化
//需要先在运行目录下创建文件夹opencv_layers
#include <iostream>
#include <unistd.h>
#include <opencv4/opencv2/opencv.hpp>
#include <opencv4/opencv2/dnn.hpp>
#include <opencv4/opencv2/dnn/dnn.hpp> using namespace std; /*
equal list opencv_conv*relu = pycaffe_conv* */ int main(int argc, char *argv[])
{
//// SHOULD BE 4.*.*
cerr<<"WORKING IN OPENCV_VERSION "<<CV_VERSION<<'\n';
cv::Mat src = cv::imread("src.jpg"); string cfg ="deploy.prototxt";
string weights ="net_iter_25000.caffemodel";
cv::dnn::Net net = cv::dnn::readNetFromCaffe(cfg,weights); if(net.empty()){
cerr<<"loaded net failed.\n";
return -;
} cv::Mat inputBlob = cv::dnn::blobFromImage(src, /.F, cv::Size(, ), cv::Scalar(), false, false);
net.setInput(inputBlob,"data"); vector<cv::String> outputname=net.getLayerNames();
outputname.insert(outputname.begin(),"data");
cv::dnn::MatShape netInputSize = {,,,};
vector<cv::dnn::MatShape> netlastSize;
vector<vector<cv::dnn::MatShape> >layerSizes;
for(size_t i=;i<outputname.size();++i){
vector<cv::dnn::MatShape>inputLayerSize;
vector<cv::dnn::MatShape>outputLayerSize;
net.getLayerShapes(netInputSize,i,inputLayerSize,outputLayerSize);
cerr<<"layer <<"<<outputname[i]<<">> size [\n";
for(size_t j=;j<inputLayerSize.size();++j){
cerr<<"\t["<<inputLayerSize[j][];for(size_t k=;k<inputLayerSize[j].size();++k)cerr<<" x "<<inputLayerSize[j][k];cerr<<"]\n";
}
cerr<<"\tto\n";
for(size_t j=;j<outputLayerSize.size();++j){
cerr<<"\t["<<outputLayerSize[j][];for(size_t k=;k<outputLayerSize[j].size();++k)cerr<<" x "<<outputLayerSize[j][k];cerr<<"]\n";
}
cerr<<"]\n";
layerSizes.push_back(outputLayerSize);
netlastSize=inputLayerSize;
} vector<vector<cv::Mat> > outputBlob;
try{
cerr<<"\nNet forward ";
net.forward(outputBlob, outputname);
cerr<<"done\n\n";
}catch(exception e){
cerr << e.what() << '\n';
} string selectLayer="conv4"; for(size_t i=;i<outputname.size();++i){ for(size_t j=;j<outputBlob[i].size();++j){
try{ cv::Mat blob;
cv::normalize(outputBlob[i][j], blob, , , cv::NORM_MINMAX); cerr<<"blob dim = "<<blob.size.dims()<<" with type "<<blob.type()<<'\n';
//b * c * w * h
//b * w * h
//b * w
cerr<<"blob shape ["<<blob.size.p[];for(size_t k=;k<blob.size.dims();++k)cerr<<" x "<<blob.size.p[k];cerr<<"]\n";
cerr<<"real shape ["<<layerSizes[i][j][];for(size_t k=;k<layerSizes[i][j].size();++k)cerr<<" x "<<layerSizes[i][j][k];cerr<<"]\n"; cv::Mat saveimg;
float* data=(float*)blob.data;
string savepath;
int s[]={}; switch(blob.size.dims()){
case :
saveimg.create(layerSizes[i][j][],,CV_8UC1);
for(size_t pi=; pi<layerSizes[i][j][]; ++pi){
saveimg.data[pi]=data[pi];
}
savepath = "opencv_layers/layer_"+strip(outputname[i],"/")+".jpg";
cv::imwrite(savepath,saveimg);
saveimg.release();
break;
case :
s[]=layerSizes[i][j][];
s[]=layerSizes[i][j][];
saveimg.create(layerSizes[i][j][],layerSizes[i][j][],CV_8UC1);
for(size_t pi=; pi<s[]*s[]; ++pi){
saveimg.data[pi]=(uchar)data[pi];
}
savepath = "opencv_layers/layer_"+strip(outputname[i],"/")+".jpg";
cv::imwrite(savepath,saveimg);
saveimg.release();
break;
case :
s[]=layerSizes[i][j][];
s[]=layerSizes[i][j][];
s[]=s[]*s[];
s[]=ceil(sqrt(layerSizes[i][j][]));
s[]=;
saveimg=cv::Mat::zeros((s[]+)*s[],(s[]+)*s[],CV_8UC1);
fprintf(stderr,"saveimg <%d,%d> for %d\n",saveimg.rows,saveimg.cols,layerSizes[i][j][]);
for(size_t wy=; wy<s[]; ++wy){
for(size_t wx=; wx<s[]; ++wx){
if(s[]>=layerSizes[i][j][])break;
s[]=;
for(size_t py=; py<s[]; ++py){
for(size_t px=; px<s[]; ++px){
saveimg.data[(wy*(s[]+)+py)*s[]*(s[]+)+wx*(s[]+)+px]=(uchar)data[s[]*s[]+s[]];
++s[];
}
}
++s[];
}
} savepath = "opencv_layers/layer_"+strip(outputname[i],"/")+".jpg";
cv::imwrite(savepath,saveimg);
saveimg.release();
break;
default:
cerr<<" exordinary dim\n";
break;
}
cerr<<"save to "<<savepath<<'\n'; blob.release();
}catch(exception e){
cerr<<" escape beacuse "<<e.what()<<'\n';
}
}
} fprintf(stderr, "float %d, double %d\n",sizeof(float),sizeof(double));
//blob <CV_32FC1,5> float
fprintf(stderr, "type list : <CV_8UC1,%d> <CV_8UC3,%d> <CV_16FC1,%d> <CV_16FC3,%d> <CV_16SC1,%d> <CV_16SC3,%d> <CV_32FC1,%d> <CV_32SC1,%d> ",
CV_8UC1,CV_8UC3,CV_16FC1,CV_16FC3,CV_16SC1,CV_16SC3,CV_32FC1,CV_32SC1);
return ;
}
C++中使用OPENCV对深度学习的特征图进行可视化的更多相关文章
- Opencv调用深度学习模型
https://blog.csdn.net/lovelyaiq/article/details/79929393 https://blog.csdn.net/qq_29462849/article/d ...
- 语义分割:基于openCV和深度学习(二)
语义分割:基于openCV和深度学习(二) Semantic segmentation in images with OpenCV 开始吧-打开segment.py归档并插入以下代码: Semanti ...
- 语义分割:基于openCV和深度学习(一)
语义分割:基于openCV和深度学习(一) Semantic segmentation with OpenCV and deep learning 介绍如何使用OpenCV.深度学习和ENet架构执行 ...
- 蛋白质组DIA深度学习之谱图预测
目录 1. 简介 2. 近几年发表的主要工具 1.DeepRT 2.Prosit 3. DIANN 4.DeepDIA 1. 简介 基于串联质谱的蛋白质组学大部分是依赖于数据库(database se ...
- Android中AdapterView/Adapter的深度学习
BaseAdapter的深度学习 博主工作了几年,也用了几年的ListView等AdapterView控件,但关于Adapter的一些问题并没有深入下去,终于有时间学习总结下关于BaseAdapter ...
- 使用VS+OpenCV调用深度学习模型
最近项目有个任务,要在windows环境下用VS+OpenCV实现caffe模型的调用,于是在网上找了几个相关的博客跑了几个demo练练手.这些博客写得都很详细,但是有些细节由于版本更新的问题,配置的 ...
- 人工智能之基于Opencv与深度学习的计算机视觉实战课程
https://www.bilibili.com/video/av66375362 imagewatch:https://blog.csdn.net/iracer/article/details/83 ...
- 深度学习原理与框架-Tensorboard可视化展示(代码) 1.tf.reuse_default_graph(进行结构图的重置) 2.tf.summary.FileWriter(writer实例化) 3. write.add_graph(graph的写入) 4. tf.summary.merge_all(将summary进行合并) 5.write.add_summary(将所有summary)
1. tf.reuse_default_graph() # 对graph结构图进行清除和重置操作 2.tf.summary.FileWriter(path)构造writer实例化,以便进行后续的gra ...
- 华为云ModelArts图深度学习,学习知识还能考取微认证
作为人工智能最前沿的技术之一,图深度学习被公认是人工智能认识世界实现因果推理的关键,也是深度学习未来发展的方向.但深度学习对图数据模型的支持性差一直是众多研究者难以攻克的难点,因此图深度学习在实际生产 ...
随机推荐
- sql语句中的占位符?有什么作用
String sql = "SELECT userid,name FROM tuser WHERE userid=? AND password=?" ; pstmt = conn. ...
- vue1 计算属性
- java后台表单字符串长度验证
1.方法封装前提实体类属性去除首尾空白并进行反转义 //实体类属性的get方法 public String getContent() { if(!"".equals(字符串属性名) ...
- sql 查询 between and 和 >= <= 比较
好久没有更新博客了,积累了很多问题没有得到解决,自己也在纠结有些东西需不需要花时间研究一下,认真想了想,不管怎么样,不能停止更新博客,继续保持一周至少一篇的习惯,不能放弃. 今天说的问题比较简单,就是 ...
- Appium自动化测试教程-自学网-adb命令
adb命令: adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信.它可为各种设备操作提供便利,如安装和调试应用. T ...
- 030_根据 md5 校验码,检测文件是否被修改
#!/bin/bash#本示例脚本检测的是/etc 目录下所有的 conf 结尾的文件,根据实际情况,可以修改为其他目录或文件#本脚本在目标数据没有被修改时执行一次,当怀疑数据被人篡改,再执行一次#将 ...
- HTML5 本地数据库(SQLite) 示例
http://supercharles888.blog.51cto.com/609344/856071 http://www.sqlite.org/download.html
- bzoj4400
/* * 此题同bzoj2725 * 增加了枚举边的操作 */ #include <bits/stdc++.h> ;// oo = 999999999; #define LL long l ...
- Machine Schedule为什么UVA过了POJ过不了
UVA1194 POJ1325 POJ要多判一个非零!!! #include<cstdio> #include<vector> #include<cstring> ...
- 报错 One or more constraints have not been satisfied.
常出现在导入已有标签时. 需要在<build/><plugins/>里面追加标签 <plugin> <groupId>org.apache.maven. ...