pyecharts v1 版本 学习笔记 折线图,面积图
折线图
折线图 基本demo
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105])
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

折线图 如果有空数据连接
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105],is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49],is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line连接空数据"))
)
c.render_notebook()

平滑曲线展示
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105], is_smooth=True,is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render_notebook()

面积图:
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

line 面积图 (紧贴y轴) 曲线表示
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105],is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
) )
).set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
c.render_notebook()

对数轴显示 等比
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
.add_yaxis(
"2 的指数",
y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
"3 的指数",
y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Line-对数轴示例"),
xaxis_opts=opts.AxisOpts(name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
)
c.render_notebook()

line-markline 平均值
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

混合使用折线图 最大值,最小值 平均值(着重标注)
import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
# markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max"),opts.MarkPointItem(type_="min")]), #点出来 )
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

pyecharts v1 版本 学习笔记 折线图,面积图的更多相关文章
- pyecharts v1 版本 学习笔记 饼图,玫瑰图
饼图: 普通案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...
- pyecharts v1 版本 学习笔记 散点图
散点图 基本案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...
- pyecharts v1 版本 学习笔记 柱状图
柱状图 bar 基本演示例子 from pyecharts import options as opts from pyecharts.charts import Bar c =( Bar().add ...
- 学习笔记:APP切图那点事儿–详细介绍android和ios平台
学习笔记:APP切图那点事儿–详细介绍android和ios平台 转载自:http://www.woofeng.cn/articles/168.html 版权归原作者所有 作者:亚茹有李 原文地址 ...
- Python交互图表可视化Bokeh:4. 折线图| 面积图
折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...
- Matplotlib学习---用matplotlib画面积图(area chart)
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...
- 雨痕 的《Python学习笔记》--附脑图(转)
原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...
- ubuntu上pyecharts V1版本环境搭建
1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...
- 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图
1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...
随机推荐
- 堆学习笔记(未完待续)(洛谷p1090合并果子)
上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...
- 汉字在unicode中的位置
在www.unicode.org中查找汉字.china找不到,后来查资料才明白,应该查CJK,为什么内? unicode这个组织吧中国日本韩国的字合并了 中日韩统一表意文字(CJK Unified ...
- ndarray笔记
Numpy的介绍 1. Ndarray:N-dimensional array, N维数组 2. 一种由相同类型的元素组成的多维数组,元素数量是事先指定好的 例:建立Ndarray多维数组 nd ...
- Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering
粗到精的卷积神经网络与自适应聚类相结合的图像拼接篡改检测 研究方向:图像篡改检测 论文出处:ELSEVIER A类 学校:西安电子科技大学网络工程学院.重庆邮电大学计算机科学与技术学院 关键字:Spl ...
- SAS学习笔记40 SAS程序运行过程
当我们提交运行一个DATA步程序后,具体发生了什么事情. SAS程序与其他程序一样,在运行时都要经过两个阶段:编译(Compilation).执行(Execution) 程序首先经过编译阶段,该阶段主 ...
- 一个农民工自学java找到工作的励志故事
<!-----------------------------------------------------------------------------摘自网络-------------- ...
- Comet OJ Contest #3
A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...
- THUPC2019/CTS2019/APIO2019游记
Day -? 居然还能报上thupc,我在队里唯一的作用大约是cfrating稍微高点方便过审.另外两位是lz和xyy. Day -2 我夫人生日! Day -1 lz和xyy的家长都来了带我飞.住在 ...
- (十九)SpringBoot之使用Spring Session集群-redis
一.引入maven依赖 <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEnc ...
- (十八)SpringBoot之发送QQ邮件
一.引入maven依赖 <dependencies> <dependency> <groupId>org.springframework.boot</grou ...