折线图

折线图 基本demo

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105])
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

折线图 如果有空数据连接

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105],is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49],is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line连接空数据"))
)
c.render_notebook()

平滑曲线展示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105], is_smooth=True,is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render_notebook()

面积图:

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

line 面积图 (紧贴y轴)  曲线表示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105],is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
) )
).set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
c.render_notebook()

对数轴显示  等比

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
.add_yaxis(
"2 的指数",
y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
"3 的指数",
y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Line-对数轴示例"),
xaxis_opts=opts.AxisOpts(name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
)
c.render_notebook()

line-markline  平均值

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

混合使用折线图  最大值,最小值 平均值(着重标注)

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
# markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max"),opts.MarkPointItem(type_="min")]), #点出来 )
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

pyecharts v1 版本 学习笔记 折线图,面积图的更多相关文章

  1. pyecharts v1 版本 学习笔记 饼图,玫瑰图

    饼图: 普通案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  2. pyecharts v1 版本 学习笔记 散点图

    散点图 基本案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  3. pyecharts v1 版本 学习笔记 柱状图

    柱状图 bar 基本演示例子 from pyecharts import options as opts from pyecharts.charts import Bar c =( Bar().add ...

  4. 学习笔记:APP切图那点事儿–详细介绍android和ios平台

    学习笔记:APP切图那点事儿–详细介绍android和ios平台 转载自:http://www.woofeng.cn/articles/168.html   版权归原作者所有 作者:亚茹有李 原文地址 ...

  5. Python交互图表可视化Bokeh:4. 折线图| 面积图

    折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...

  6. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  7. 雨痕 的《Python学习笔记》--附脑图(转)

    原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...

  8. ubuntu上pyecharts V1版本环境搭建

    1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...

  9. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

随机推荐

  1. 数据分析之--Mataplotlib入门

    目录 Mataplotlib Seaborn 绘制线性图 图片的标题 点和线的样式 X和Y轴可读的映射 直方图 柱状图 条件性柱状图 饼图 箱图 散步图 3D图 Excel数据导入数据库 Matapl ...

  2. Linux (x86) Exploit 开发系列教程之一(典型的基于堆栈的缓冲区溢出)

    (1)漏洞代码 //vuln.c #include <stdio.h> #include <string.h> int main(int argc, char* argv[]) ...

  3. spring cloud微服务实践三

    上篇文章里我们实现了spring cloud中的服务提供者和使用者.接下来我们就来看看spring cloud中微服务的其他组件. 注:这一个系列的开发环境版本为 java1.8, spring bo ...

  4. Python开发【第七章】:异常处理

    一.异常处理 1.异常基础 在编程过程中为了增加友好性,在程序出现bug时一般不会将错误信息显示给用户,而是现实一个提示的页面,通俗来说就是不让用户看见大黄页!!! #异常处理 list = [&qu ...

  5. Scratch教程:谁是真悟空

    在西游记中,有一集是“真假悟空”,六耳猕猴变成了悟空的模样与真悟空真假难辨,打的不可开交. 在Scartch中,我们常常会使用一个本体来生成多个克隆体,这在开发过程中有重要的意义.但在实际操作中,每个 ...

  6. SpringCloud Stream 消息驱动

    1.什么是消息驱动 SpringCloud Stream消息驱动可以简化开发人员对消息中间件的使用复杂度,让系统开发人员更多尽力专注与核心业务逻辑的开发.SpringCloud Stream基于Spr ...

  7. 【转载】在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to utilize time zone support

    在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone config ...

  8. 修改win7 iis上传文件大小限制200KB

    win7 iis 修改上传限制,需要修改2个地方: 1,“双击“Internet 信息服务(IIS)管理器”中的“ASP”– 打开“配置 ASP 应用程序的属性”–展开“限制属性”:修改“最大请求实体 ...

  9. 笔记: ASP.NET Core视图组件

    视图组件 asp.net core mvc 提供了部分视图的新替代品:视图组件. 视图组件与分布视图的主要区别在于视图组件与控制器不相关.可使用在独立于单个控制器的场景,如:菜单导航.侧边栏.分页栏等 ...

  10. openssh升级

    转载:(感谢作者) centos7 升级openssh到openssh-8.0p1版本 https://www.cnblogs.com/nmap/p/10779658.html centos 7 op ...