折线图

折线图 基本demo

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105])
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

折线图 如果有空数据连接

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105],is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49],is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line连接空数据"))
)
c.render_notebook()

平滑曲线展示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105], is_smooth=True,is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render_notebook()

面积图:

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

line 面积图 (紧贴y轴)  曲线表示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105],is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
) )
).set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
c.render_notebook()

对数轴显示  等比

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
.add_yaxis(
"2 的指数",
y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
"3 的指数",
y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Line-对数轴示例"),
xaxis_opts=opts.AxisOpts(name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
)
c.render_notebook()

line-markline  平均值

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

混合使用折线图  最大值,最小值 平均值(着重标注)

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
# markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max"),opts.MarkPointItem(type_="min")]), #点出来 )
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

pyecharts v1 版本 学习笔记 折线图,面积图的更多相关文章

  1. pyecharts v1 版本 学习笔记 饼图,玫瑰图

    饼图: 普通案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  2. pyecharts v1 版本 学习笔记 散点图

    散点图 基本案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  3. pyecharts v1 版本 学习笔记 柱状图

    柱状图 bar 基本演示例子 from pyecharts import options as opts from pyecharts.charts import Bar c =( Bar().add ...

  4. 学习笔记:APP切图那点事儿–详细介绍android和ios平台

    学习笔记:APP切图那点事儿–详细介绍android和ios平台 转载自:http://www.woofeng.cn/articles/168.html   版权归原作者所有 作者:亚茹有李 原文地址 ...

  5. Python交互图表可视化Bokeh:4. 折线图| 面积图

    折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...

  6. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  7. 雨痕 的《Python学习笔记》--附脑图(转)

    原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...

  8. ubuntu上pyecharts V1版本环境搭建

    1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...

  9. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

随机推荐

  1. LC 173. Binary Search Tree Iterator

    题目描述 Implement an iterator over a binary search tree (BST). Your iterator will be initialized with t ...

  2. 制作一个centos+jdk8+tomcatd9镜像

    docker解析:     1.登录docker             docker ecex –it 容器名/容器id /bin/bash         例如:             dock ...

  3. 使用Duilib开发Windows软件(1)——HelloWorld

    我使用的是网易版本: https://github.com/netease-im/NIM_Duilib_Framework 时间是2019-11-28,作者最新的提交如下图: 运行官方示例程序 下载完 ...

  4. java运算符那些事

    && 逻辑与 &&先运算&&左边的算式,如果为假,则直接停止,后面不管有多少运算式都不再运算,如果为真则继续判断后面的式子,只有所有的条件全部成立,才会 ...

  5. 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》

    将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...

  6. 解决使用绝对定位absolute后,margin:0 auto居中方法失效(转)

    https://blog.csdn.net/qq_40678503/article/details/82780680

  7. poj 3253 哈夫曼贪心

    http://poj.org/problem?id=3253 题意: FJ需要修补牧场的围栏,他需要 N 块长度为 Li 的木头(N planks of woods).开始时,FJ只有一块无限长的木板 ...

  8. oracle查询十分钟之前的数据

    select * from TABLE as of timestamp sysdate - 10/1440 t WHERE ColName='1111'; TABLE:表名 WHERE:查询子句 sy ...

  9. 使用HTML CSS制作简易三角形和旗帜

    HTML:     <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  10. php获取客户机mac地址

    @exec("arp -a",$array); //执行arp -a命令,结果放到数组$array中 foreach($array as $value){ //匹配结果放到数组$m ...