折线图

折线图 基本demo

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105])
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

折线图 如果有空数据连接

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105],is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49],is_connect_nones=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line连接空数据"))
)
c.render_notebook()

平滑曲线展示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, None, 105], is_smooth=True,is_connect_nones=True)
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-smooth"))
)
c.render_notebook()

面积图:

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
)
c.render_notebook()

line 面积图 (紧贴y轴)  曲线表示

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis('商家A', [114, 55, 27, 101, 125, 27, 105],is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.add_yaxis('商家B',[57, 134, 137, 129, 145, 60, 49], is_smooth=True, areastyle_opts=opts.AreaStyleOpts(opacity=0.5))
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
) )
).set_series_opts(
areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
label_opts=opts.LabelOpts(is_show=False),
)
c.render_notebook()

对数轴显示  等比

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(xaxis_data=["一", "二", "三", "四", "五", "六", "七", "八", "九"])
.add_yaxis(
"2 的指数",
y_axis=[1, 2, 4, 8, 16, 32, 64, 128, 256],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.add_yaxis(
"3 的指数",
y_axis=[1, 3, 9, 27, 81, 247, 741, 2223, 6669],
linestyle_opts=opts.LineStyleOpts(width=2),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Line-对数轴示例"),
xaxis_opts=opts.AxisOpts(name="x"),
yaxis_opts=opts.AxisOpts(
type_="log",
name="y",
splitline_opts=opts.SplitLineOpts(is_show=True),
is_scale=True,
),
)
)
c.render_notebook()

line-markline  平均值

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

混合使用折线图  最大值,最小值 平均值(着重标注)

import pyecharts.options as opts
from pyecharts.charts import Line
c = (
Line()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis(
"商家A",
[114, 55, 27, 101, 125, 27, 105],
# markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")]),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max"),opts.MarkPointItem(type_="min")]), #点出来 )
.add_yaxis(
"商家B",
[57, 134, 137, 129, 145, 60, 49],
markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="max")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-MarkLine"))
)
c.render_notebook()

pyecharts v1 版本 学习笔记 折线图,面积图的更多相关文章

  1. pyecharts v1 版本 学习笔记 饼图,玫瑰图

    饼图: 普通案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  2. pyecharts v1 版本 学习笔记 散点图

    散点图 基本案例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  3. pyecharts v1 版本 学习笔记 柱状图

    柱状图 bar 基本演示例子 from pyecharts import options as opts from pyecharts.charts import Bar c =( Bar().add ...

  4. 学习笔记:APP切图那点事儿–详细介绍android和ios平台

    学习笔记:APP切图那点事儿–详细介绍android和ios平台 转载自:http://www.woofeng.cn/articles/168.html   版权归原作者所有 作者:亚茹有李 原文地址 ...

  5. Python交互图表可视化Bokeh:4. 折线图| 面积图

    折线图与面积图 ① 单线图.多线图② 面积图.堆叠面积图 1. 折线图--单线图 import numpy as np import pandas as pd import matplotlib.py ...

  6. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  7. 雨痕 的《Python学习笔记》--附脑图(转)

    原文:http://www.pythoner.com/148.html 近日,在某微博上看到有人推荐了 雨痕 的<Python学习笔记>,从github上下载下来看了下,确实很不错. 注意 ...

  8. ubuntu上pyecharts V1版本环境搭建

    1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...

  9. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

随机推荐

  1. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  2. 汉字在unicode中的位置

    在www.unicode.org中查找汉字.china找不到,后来查资料才明白,应该查CJK,为什么内? unicode这个组织吧中国日本韩国的字合并了   中日韩统一表意文字(CJK Unified ...

  3. ndarray笔记

    Numpy的介绍 1. Ndarray:N-dimensional array, N维数组 2. 一种由相同类型的元素组成的多维数组,元素数量是事先指定好的 例:建立Ndarray多维数组    nd ...

  4. Image splicing forgery detection combining coarse to refined convolutional neural network and adaptive clustering

    粗到精的卷积神经网络与自适应聚类相结合的图像拼接篡改检测 研究方向:图像篡改检测 论文出处:ELSEVIER A类 学校:西安电子科技大学网络工程学院.重庆邮电大学计算机科学与技术学院 关键字:Spl ...

  5. SAS学习笔记40 SAS程序运行过程

    当我们提交运行一个DATA步程序后,具体发生了什么事情. SAS程序与其他程序一样,在运行时都要经过两个阶段:编译(Compilation).执行(Execution) 程序首先经过编译阶段,该阶段主 ...

  6. 一个农民工自学java找到工作的励志故事

    <!-----------------------------------------------------------------------------摘自网络-------------- ...

  7. Comet OJ Contest #3

    A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...

  8. THUPC2019/CTS2019/APIO2019游记

    Day -? 居然还能报上thupc,我在队里唯一的作用大约是cfrating稍微高点方便过审.另外两位是lz和xyy. Day -2 我夫人生日! Day -1 lz和xyy的家长都来了带我飞.住在 ...

  9. (十九)SpringBoot之使用Spring Session集群-redis

    一.引入maven依赖 <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEnc ...

  10. (十八)SpringBoot之发送QQ邮件

    一.引入maven依赖 <dependencies> <dependency> <groupId>org.springframework.boot</grou ...