转载自: http://bigdataer.net/?p=569

1.背景

在使用spark开发分布式数据计算作业过程中或多或少会遇到如下的错误:

Serialization stack:
object not serializable (class:class: org.apache.hadoop.hbase.io.ImmutableBytesWritable, value: 30 30 30 30 30 30 32 34 32 30 32 37 37 32 31)
field (class: scala.Tuple2, name: _1, type: class java.lang.Object) ……

或者如下的错误:

org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner …

表面意思都是无法序列化导致的。spark运行过程中为什么要序列化?下面来分析一下。

2.分析

spark处理的数据单元为RDD(即弹性分布式数据集),当我们要对RDD做诸如map,filter等操作的时候是在excutor上完成的。但是如果我们在driver中定义了一个变量,在map等操作中使用,则这个变量就要被分发到各个excutor,因为driver和excutor的运行在不同的jvm中,势必会涉及到对象的序列化与反序列化。如果这个变量没法序列化就会报异常。还有一种情况就是引用的对象可以序列化,但是引用的对象本身引用的其他对象无法序列化,也会有异常

3.解决方案

(1) 举例

class UnserializableClass {
def method(x:Int):Int={
x*x
}
}

另外,有如下的spark代码块:

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10, 3)
val usz = new UnserializableClass()
rdd.map(x=>usz.method(x)).foreach(println(_))
}
}

那么运行的时候就会抛出异常

Exception in thread “main” org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at net.bigdataer.spark.SparkTest$.main(SparkTest.scala:16)

(2) 解决方案

1. 将不可序列化的对象定义在闭包内

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
rdd.map(x=>new UnserializableClass().method(x)).foreach(println(_)) //在map中创建UnserializableClass对象
}
}

2.将所调用的方法改为函数,在高阶函数中使用

class UnserializableClass {
//method方法
/*def method(x:Int):Int={
x*x
}*/ //method函数
val method = (x:Int)=>x*x
}
在SparkTest中传入函数
object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
val usz = new UnserializableClass()
rdd.map(usz.method).foreach(println(_)) //注意这里传入的是函数
}
}

3.给无法序列化的类加上java.io.Serializable接口

class UnserializableClass extends java.io.Serializable{ //加接口
def method(x:Int):Int={
x*x
}
}

4.注册序列化类

以上三个方法基于UnserializableClass可以被修改来说的,假如UnserializableClass来自于第三方,你无法修改其源码就可以使用为其注册序列化类的方法。

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test") conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") //指定序列化类为KryoSerializer
conf.registerKryoClasses(Array(classOf[net.bigdataer.spark.UnserializableClass])) //将UnserializableClass注册到kryo需要序列化的类中 val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
val usz = new UnserializableClass()
rdd.map(x=>usz.method(x)).foreach(println(_))
}
}

第一种方法比较简单实用。

spark not serializable异常分析及解决方案的更多相关文章

  1. Java ConcurrentModificationException 异常分析与解决方案

    Java ConcurrentModificationException 异常分析与解决方案http://www.2cto.com/kf/201403/286536.html java.util.Co ...

  2. 【转】Java ConcurrentModificationException 异常分析与解决方案--还不错

    原文网址:http://www.2cto.com/kf/201403/286536.html 一.单线程 1. 异常情况举例 只要抛出出现异常,可以肯定的是代码一定有错误的地方.先来看看都有哪些情况会 ...

  3. Selenium常见异常分析及解决方案

    pycharm中导入selenium报错 现象: pycharm中输入from selenium import webdriver, selenium标红 原因1: pycharm使用的虚拟环境中没有 ...

  4. hive on spark:return code 30041 Failed to create Spark client for Spark session原因分析及解决方案探寻

    最近在Hive中使用Spark引擎进行执行时(set hive.execution.engine=spark),经常遇到return code 30041的报错,为了深入探究其原因,阅读了官方issu ...

  5. Canal 同步异常分析:Could not find first log file name in binary log index file

    文章首发于[博客园-陈树义],点击跳转到原文Canal同步异常分析:Could not find first log file name in binary log index file. 公司搜索相 ...

  6. flume常见异常汇总以及解决方案

    flume常见异常汇总以及解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 实际生产环境中,我用flume将kafka的数据定期的往hdfs集群中上传数据,也遇到过一系列的坑 ...

  7. 第一篇:Spark SQL源码分析之核心流程

    /** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人 ...

  8. Linux Kernel Oops异常分析

    1.PowerPC小系统内核异常分析 1.1  异常打印 Unable to handle kernel paging request for data at address 0x36fef31eFa ...

  9. MySQL 外键异常分析

    外键约束异常现象 如下测例中,没有违反引用约束的插入失败. create database `a-b`; use `a-b`; SET FOREIGN_KEY_CHECKS=0; create tab ...

随机推荐

  1. Docker 镜像的内部结构(四)

    目录 一.base镜像 1.rootfs 2.base 镜像提供的是最小安装的 Linux 发行版. 3.支持运行多种 Linux OS 二.镜像的分层结构 可写的容器层 一.base镜像 base ...

  2. Python爬取链家二手房源信息

    爬取链家网站二手房房源信息,第一次做,仅供参考,要用scrapy.   import scrapy,pypinyin,requests import bs4 from ..items import L ...

  3. coverage代码覆盖率的使用~~

    我们看下代码覆盖率的统计~,这个不必太揪心,觉得可以帮助你优化代码,可以看看,也不要带在意~ 1.先在cmd命令窗口在线安装coverage pip install coverage 2.安装完毕后我 ...

  4. [转帖]Swagger介绍及使用

    Swagger介绍及使用 32018.12.07 01:39:21字数 2241阅读 89207 https://www.jianshu.com/p/349e130e40d5 导语: 相信无论是前端还 ...

  5. sqlite lib导入

    依赖 1.System.Data.SQLite 2.SqlKata //https://www.nuget.org/profiles/SQLite //http://system.data.sqlit ...

  6. 为什么 Python 中的 True 等于 1

    开始的时候,需要用以下函数来做一个判断,根据返回的值来做一些后续判断处理: def is_success(param): if not param: return False return True ...

  7. 初始STM32

    主要内容: 1.什么是STM32 STM32有什么 STM32怎么选型号 一:什么是STM32 ST— 意法半寻体,是一个公司名,即SOC厂商(ARM是IP厂商,STM32中内核由ARM设计,外设例如 ...

  8. SAS学习笔记27 卡方检验

    卡方检验(chi-square test)是英国统计学家Pearson提出的一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别. 卡方分布界值表的依据 ...

  9. JVM 介绍

    JVM 介绍: JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的 ...

  10. tcpdump使用的心得

    这个linux的抓包工具确实用的不多,这段时间由于处理现场的问题所以就需要这个工具,主要是要知道网卡的信息. 命令就是 tcpdump -i 网卡名