转载自: http://bigdataer.net/?p=569

1.背景

在使用spark开发分布式数据计算作业过程中或多或少会遇到如下的错误:

Serialization stack:
object not serializable (class:class: org.apache.hadoop.hbase.io.ImmutableBytesWritable, value: 30 30 30 30 30 30 32 34 32 30 32 37 37 32 31)
field (class: scala.Tuple2, name: _1, type: class java.lang.Object) ……

或者如下的错误:

org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner …

表面意思都是无法序列化导致的。spark运行过程中为什么要序列化?下面来分析一下。

2.分析

spark处理的数据单元为RDD(即弹性分布式数据集),当我们要对RDD做诸如map,filter等操作的时候是在excutor上完成的。但是如果我们在driver中定义了一个变量,在map等操作中使用,则这个变量就要被分发到各个excutor,因为driver和excutor的运行在不同的jvm中,势必会涉及到对象的序列化与反序列化。如果这个变量没法序列化就会报异常。还有一种情况就是引用的对象可以序列化,但是引用的对象本身引用的其他对象无法序列化,也会有异常

3.解决方案

(1) 举例

class UnserializableClass {
def method(x:Int):Int={
x*x
}
}

另外,有如下的spark代码块:

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10, 3)
val usz = new UnserializableClass()
rdd.map(x=>usz.method(x)).foreach(println(_))
}
}

那么运行的时候就会抛出异常

Exception in thread “main” org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at net.bigdataer.spark.SparkTest$.main(SparkTest.scala:16)

(2) 解决方案

1. 将不可序列化的对象定义在闭包内

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
rdd.map(x=>new UnserializableClass().method(x)).foreach(println(_)) //在map中创建UnserializableClass对象
}
}

2.将所调用的方法改为函数,在高阶函数中使用

class UnserializableClass {
//method方法
/*def method(x:Int):Int={
x*x
}*/ //method函数
val method = (x:Int)=>x*x
}
在SparkTest中传入函数
object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
val usz = new UnserializableClass()
rdd.map(usz.method).foreach(println(_)) //注意这里传入的是函数
}
}

3.给无法序列化的类加上java.io.Serializable接口

class UnserializableClass extends java.io.Serializable{ //加接口
def method(x:Int):Int={
x*x
}
}

4.注册序列化类

以上三个方法基于UnserializableClass可以被修改来说的,假如UnserializableClass来自于第三方,你无法修改其源码就可以使用为其注册序列化类的方法。

object SparkTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test") conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") //指定序列化类为KryoSerializer
conf.registerKryoClasses(Array(classOf[net.bigdataer.spark.UnserializableClass])) //将UnserializableClass注册到kryo需要序列化的类中 val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10,3)
val usz = new UnserializableClass()
rdd.map(x=>usz.method(x)).foreach(println(_))
}
}

第一种方法比较简单实用。

spark not serializable异常分析及解决方案的更多相关文章

  1. Java ConcurrentModificationException 异常分析与解决方案

    Java ConcurrentModificationException 异常分析与解决方案http://www.2cto.com/kf/201403/286536.html java.util.Co ...

  2. 【转】Java ConcurrentModificationException 异常分析与解决方案--还不错

    原文网址:http://www.2cto.com/kf/201403/286536.html 一.单线程 1. 异常情况举例 只要抛出出现异常,可以肯定的是代码一定有错误的地方.先来看看都有哪些情况会 ...

  3. Selenium常见异常分析及解决方案

    pycharm中导入selenium报错 现象: pycharm中输入from selenium import webdriver, selenium标红 原因1: pycharm使用的虚拟环境中没有 ...

  4. hive on spark:return code 30041 Failed to create Spark client for Spark session原因分析及解决方案探寻

    最近在Hive中使用Spark引擎进行执行时(set hive.execution.engine=spark),经常遇到return code 30041的报错,为了深入探究其原因,阅读了官方issu ...

  5. Canal 同步异常分析:Could not find first log file name in binary log index file

    文章首发于[博客园-陈树义],点击跳转到原文Canal同步异常分析:Could not find first log file name in binary log index file. 公司搜索相 ...

  6. flume常见异常汇总以及解决方案

    flume常见异常汇总以及解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 实际生产环境中,我用flume将kafka的数据定期的往hdfs集群中上传数据,也遇到过一系列的坑 ...

  7. 第一篇:Spark SQL源码分析之核心流程

    /** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人 ...

  8. Linux Kernel Oops异常分析

    1.PowerPC小系统内核异常分析 1.1  异常打印 Unable to handle kernel paging request for data at address 0x36fef31eFa ...

  9. MySQL 外键异常分析

    外键约束异常现象 如下测例中,没有违反引用约束的插入失败. create database `a-b`; use `a-b`; SET FOREIGN_KEY_CHECKS=0; create tab ...

随机推荐

  1. selenium UI自动化解决验证码的五种方法

    TesseractPy3.py #coding=utf-8 import os import subprocess import traceback import logging from PIL i ...

  2. 【VS开发】fatal error C1853: "Debug\sift.pch"预编译头文件来自编译器的早期版本

    fatal error C1853: "Debug\sift.pch"预编译头文件来自编译器的早期版本 <pre id="best-content-12991040 ...

  3. oracle数据库数据转储最好方式(数据库表、数据结构和数据一并导出)

    导入:使用plsql:Tools --> Import Tables --> SQL Inserts  得到的为sql文件,在转储的过程中当导入另一个库的时候老是报  “表或视图不存在” ...

  4. web前端常用meta整理

    标签提供关于HTML文档的元数据.元数据不会显示在页面上,但是对于机器是可读的.它可用于浏览器(如何显示内容或重新加载页面),搜索引擎(关键词),或其他 web 服务. 页面关键词 <meta ...

  5. 27.Spark中transformation的介绍

    Spark支持两种RDD操作:transformation和action.transformation操作会针对已有的RDD创建一个新的RDD: 而action则主要是对RDD进行最后的操作,比如遍历 ...

  6. 会话技术——Cookies和Session详解

    会话技术 (一) 概述.用途以及分类 (1) 基本概述 概述:会话是浏览器和服务器之间的多次请求和响应 也就是说,从浏览器访问服务器开始,到访问服务器结束,浏览器关闭为止的这段时间内容产生的多次请求和 ...

  7. Erlang:[笔记二,构建工具rebar之发布应用]

    概述 通过rebar可以发布rebar构建的erlang项目,生成可执行的二进制脚本文件,大大降低了执行应用的复杂度.该笔记Erlang环境为Erlang/OTP 19 ,以下适用于Eralng/OT ...

  8. Spring Boot系列教程十三:Spring boot集成Sentinel Redis

    前言 上一篇文章介绍了spring boot集成单点的redis,然而实际生产环境使用单点的redis风险很高,一旦宕机整个服务将无法使用,这篇文章介绍如何使用基于sentinel的redis高可用方 ...

  9. Swoft2.x 小白学习笔记 (二) --- mysql、redis

    介绍swoft中 1.mysql. 2.Redis 一.mysql使用: 1.配置,在 app\bean.php文件中 'db' => [ 'class' => Database::cla ...

  10. TZOJ2882: 美食节之感恩父母

    #include<stdio.h> int main() { ],b[],i,j,max,m,t1,t2,t3; while(scanf("%d",&m),m) ...