E - Qwerty78 Trip

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

standard input/output 
Announcement

 
  • Statements

    Qwerty78 is a well known programmer (He is a member of the ICPC WF winning team in 2015, a topcoder target and one of codeforces top 10).

    He wants to go to Dreamoon's house to apologize to him, after he ruined his plans in winning a Div2 contest (He participated using the handle "sorry_Dreamoon") so he came first and Dreamoon came second.

    Their houses are presented on a grid of N rows and M columns. Qwerty78 house is at the cell (1, 1) and Dreamoon's house is at the cell(N, M).

    If Qwerty78 is standing on a cell (r, c) he can go to the cell (r + 1, c) or to the cell (r, c + 1). Unfortunately Dreamoon expected Qwerty78 visit , so he put exactly 1 obstacle in this grid (neither in his house nor in Qwerty78's house) to challenge Qwerty78. Qwerty78 can't enter a cell which contains an obstacle.

    Dreamoon sent Qwerty78 a message "In how many ways can you reach my house?". Your task is to help Qwerty78 and count the number of ways he can reach Dreamoon's house. Since the answer is too large , you are asked to calculate it modulo 109 + 7 .

Input

The first line containts a single integer T , the number of testcases.

Then T testcases are given as follows :

The first line of each testcase contains two space-separated N , M ( 2 ≤ N, M ≤ 105)

The second line of each testcase contains 2 space-separated integers OR, OC - the coordinates of the blocked cell (1 ≤ OR ≤ N) (1 ≤ OC ≤ M).

Output

Output T lines , The answer for each testcase which is the number of ways Qwerty78 can reach Dreamoon's house modulo 109 + 7.

Sample Input

Input
1
2 3
1 2
Output
1

Hint

Sample testcase Explanation :

The grid has the following form:

Q*.

..D

Only one valid path:

(1,1) to (2,1) to (2,2) to (2,3).

题意,给你一个矩阵,并且里面有且只有一个障碍格(x,y),求从(1,1)走到(n,m) 的方案数

思路:首先没有障碍格的方案数是C(n+m-2,m-1),有一个障碍格的方案数就是总数-经过障碍的方案数。经过障碍格的方案数应该是:走到障碍格的方法数×从障碍格走到终点的方案数, 那么就是C(n+m-2,m-1) - C(x+y-2,y-1) × C(n-x+1+m-y+1-2, m-y+1-1); 求组合数取模,可以根据C(n,m) = n! / ((n-m)! × m!)  由于涉及到除法,取余的时候要预处理出所有阶乘的逆元。可以根据快速密来求逆元,复杂度为nlog,也可以直接递推出所有的阶乘逆元,复杂度为On

`

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2e5 + ;
const int MOD = 1e9 + ;
typedef long long ll;
ll fac[N], afac[N];
ll powm(ll a, ll b) {
ll ans = ;
a = a % MOD;
while(b) {
if(b & ) ans = ans * a % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
void pre() {
fac[] = ;
for(int i = ; i < N; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
afac[N - ] = powm(fac[N - ], MOD - );
for(int i = N - ; i >= ; --i) afac[i - ] = afac[i] * i % MOD;
}
ll get(int x, int y) {
ll ans = ;
ans = ((fac[x] * afac[x - y]) % MOD * afac[y]) % MOD;
return ans;
}
int main() {
int _; scanf("%d", &_);
pre();
while(_ --) {
ll n, m, x, y;
scanf("%I64d%I64d%I64d%I64d", &n, &m, &x, &y);
ll res1 = get(n + m - , m - );
ll res2 = get(x + y - , y - );
ll res3 = get(n + m - x - y, m - y);
printf("%I64d\n", (res1 + MOD - res2 * res3 % MOD) % MOD);
}
return ;
}
codeforces 559c- Gerald and Giant Chess

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?

The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.

Input

The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).

Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.

It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.

Output

Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.

Sample Input

Input
3 4 2
2 2
2 3
Output
2
Input
100 100 3
15 16
16 15
99 88
Output
545732279

题意:这题是上面的复杂版,有n个障碍格,n《= 2000
思路:我们设dp[i]表示到达第i个障碍格,而不经过(1,1)到(xi,yi)中其他障碍格的方案数,那么有dp[i] = C(xi+yi-2,yi-1) - sigma(dp[j] * C(xi-xj+yi-yj, yi-yj))
其中,xj <= xi && yj <= yi 我们把第 (n,m)也看做是第n+1格障碍格,那么dp[n+1] 就是答案
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = ;
const int X = 1e5 + ;
const int M = 2e5 + ;
const int MOD = 1e9 + ;
int h, w, n;
ll fac[M], afac[M], bc[N], dp[N]; ll pow_mod(ll a, ll b) {
ll ans = ;
a %= MOD;
while(b) {
if(b & ) ans = (ans * a) % MOD;
a = (a * a) % MOD;
b >>= ;
}
return ans;
}
void pre() {
fac[] = ;
for(int i = ; i < M; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
afac[M - ] = pow_mod(fac[M - ], MOD - );
for(int i = M - ; i >= ; --i) afac[i - ] = afac[i] * (ll)i % MOD;
}
ll C(int n, int m) {
if(m > n) return ;
return ((fac[n] * afac[n - m] % MOD) * afac[m]) % MOD;
}
int main() {
pre();
cin >> h >> w >> n;
ll x, y;
for(int i = ; i <= n; ++i) {
cin >> x >> y;
bc[i] = (ll)x * X + y;
}
bc[++n] = (ll)h * X + w;
sort(bc + , bc + n + );
for(int i = ; i <= n; ++i) {
int xi = bc[i] / X, yi = bc[i] % X;
dp[i] = C(xi + yi - , yi - );
for(int j = ; j < i; ++j) {
int xj = bc[j] / X, yj = bc[j] % X;
if(xj > xi || yj > yi) continue;
dp[i] = (MOD + dp[i] - (dp[j] * C(xi - xj + yi - yj, yi - yj) % MOD)) % MOD;
}
}
cout << dp[n] << endl;
return ;
}

Gym100947E || codeforces 559c 组合数取模的更多相关文章

  1. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  3. 排列组合+组合数取模 HDU 5894

    // 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...

  4. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  5. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  6. lucas定理解决大组合数取模

    LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...

  7. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  8. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  9. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

随机推荐

  1. SNMP Message Format - SNMP Tutorial

    30.10 SNMP Message Format Unlike most TCP/IP protocols, SNMP messages do not have fixed fields. Inst ...

  2. windows安装mysql5.7

    1下载mysql http://dev.mysql.com/downloads/mysql/2解压后,新建一个data文件夹,复制my-default.ini,并改名为my.ini,添加下面内容[cl ...

  3. C语言基础(5)-有符号数、无符号数、printf、大小端对齐

    1.有符号数和无符号数 有符号数就是最高位为符号位,0代表正数,1代表负数 无符号数最高位不是符号位,而就是数的一部分而已. 1011 1111 0000 1111 1111 0000 1011 10 ...

  4. [NHibernate]持久化类(Persistent Classes)

    系列文章 [Nhibernate]体系结构 [NHibernate]ISessionFactory配置 引言 持久化类是应用程序用来解决商业问题的类(比如,在电子交易程序中的Customer和Orde ...

  5. Java编程中“为了性能”需做的26件事

    1.尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: (1)控制资源的使用,通过线程同步来控制 ...

  6. MySql 外键约束 之CASCADE、SET NULL、RESTRICT、NO ACTION分析和作用

    MySQL有两种常用的引擎类型:MyISAM和InnoDB.目前只有InnoDB引擎类型支持外键约束.InnoDB中外键约束定义的语法如下: ALTER TABLE tbl_name ADD [CON ...

  7. Sizzle选择器引擎介绍

    一.前言 Sizzle原来是jQuery里面的选择器引擎,后来逐渐独立出来,成为一个独立的模块,可以自由地引入到其他类库中.我曾经将其作为YUI3里面的一个module,用起来畅通无阻,没有任何障碍. ...

  8. Hadoop-HBASE案例分析-Hadoop学习笔记<二>

    之前有幸在MOOC学院抽中小象学院hadoop体验课. 这是小象学院hadoop2.X概述第八章的笔记 主要介绍HBase,一个分布式数据库的应用案例. 案例概况: 1)时间序列数据库(OpenTSD ...

  9. Less的简单使用

    在浏览器中使用LESSCSS 浏览器端使用是在使用LESS开发时最直观的一种方式.如果是在生产环境中,尤其是对性能要求比较高的场合,建议使用node或者其它第三方工具先编译成CSS再上线使用. 浏览器 ...

  10. js导出表格数据

    考虑到浏览器兼容性问题,采用原生js和后台交互下载网页数据 js: var table = $('.table-panel table'); // Header var tdData ="& ...