Gym100947E || codeforces 559c 组合数取模
Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
Announcement
- Statements
Qwerty78 is a well known programmer (He is a member of the ICPC WF winning team in 2015, a topcoder target and one of codeforces top 10).
He wants to go to Dreamoon's house to apologize to him, after he ruined his plans in winning a Div2 contest (He participated using the handle "sorry_Dreamoon") so he came first and Dreamoon came second.
Their houses are presented on a grid of N rows and M columns. Qwerty78 house is at the cell (1, 1) and Dreamoon's house is at the cell(N, M).
If Qwerty78 is standing on a cell (r, c) he can go to the cell (r + 1, c) or to the cell (r, c + 1). Unfortunately Dreamoon expected Qwerty78 visit , so he put exactly 1 obstacle in this grid (neither in his house nor in Qwerty78's house) to challenge Qwerty78. Qwerty78 can't enter a cell which contains an obstacle.
Dreamoon sent Qwerty78 a message "In how many ways can you reach my house?". Your task is to help Qwerty78 and count the number of ways he can reach Dreamoon's house. Since the answer is too large , you are asked to calculate it modulo 109 + 7 .
Input
The first line containts a single integer T , the number of testcases.
Then T testcases are given as follows :
The first line of each testcase contains two space-separated N , M ( 2 ≤ N, M ≤ 105)
The second line of each testcase contains 2 space-separated integers OR, OC - the coordinates of the blocked cell (1 ≤ OR ≤ N) (1 ≤ OC ≤ M).
Output
Output T lines , The answer for each testcase which is the number of ways Qwerty78 can reach Dreamoon's house modulo 109 + 7.
Sample Input
1
2 3
1 2
1
Hint
Sample testcase Explanation :
The grid has the following form:
Q*.
..D
Only one valid path:
(1,1) to (2,1) to (2,2) to (2,3).
题意,给你一个矩阵,并且里面有且只有一个障碍格(x,y),求从(1,1)走到(n,m) 的方案数
思路:首先没有障碍格的方案数是C(n+m-2,m-1),有一个障碍格的方案数就是总数-经过障碍的方案数。经过障碍格的方案数应该是:走到障碍格的方法数×从障碍格走到终点的方案数, 那么就是C(n+m-2,m-1) - C(x+y-2,y-1) × C(n-x+1+m-y+1-2, m-y+1-1); 求组合数取模,可以根据C(n,m) = n! / ((n-m)! × m!) 由于涉及到除法,取余的时候要预处理出所有阶乘的逆元。可以根据快速密来求逆元,复杂度为nlog,也可以直接递推出所有的阶乘逆元,复杂度为On
`
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2e5 + ;
const int MOD = 1e9 + ;
typedef long long ll;
ll fac[N], afac[N];
ll powm(ll a, ll b) {
ll ans = ;
a = a % MOD;
while(b) {
if(b & ) ans = ans * a % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
void pre() {
fac[] = ;
for(int i = ; i < N; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
afac[N - ] = powm(fac[N - ], MOD - );
for(int i = N - ; i >= ; --i) afac[i - ] = afac[i] * i % MOD;
}
ll get(int x, int y) {
ll ans = ;
ans = ((fac[x] * afac[x - y]) % MOD * afac[y]) % MOD;
return ans;
}
int main() {
int _; scanf("%d", &_);
pre();
while(_ --) {
ll n, m, x, y;
scanf("%I64d%I64d%I64d%I64d", &n, &m, &x, &y);
ll res1 = get(n + m - , m - );
ll res2 = get(x + y - , y - );
ll res3 = get(n + m - x - y, m - y);
printf("%I64d\n", (res1 + MOD - res2 * res3 % MOD) % MOD);
}
return ;
}
Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?
The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.
Input
The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).
Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.
It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.
Output
Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.
Sample Input
3 4 2
2 2
2 3
2
100 100 3
15 16
16 15
99 88
545732279 题意:这题是上面的复杂版,有n个障碍格,n《= 2000
思路:我们设dp[i]表示到达第i个障碍格,而不经过(1,1)到(xi,yi)中其他障碍格的方案数,那么有dp[i] = C(xi+yi-2,yi-1) - sigma(dp[j] * C(xi-xj+yi-yj, yi-yj))
其中,xj <= xi && yj <= yi 我们把第 (n,m)也看做是第n+1格障碍格,那么dp[n+1] 就是答案
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = ;
const int X = 1e5 + ;
const int M = 2e5 + ;
const int MOD = 1e9 + ;
int h, w, n;
ll fac[M], afac[M], bc[N], dp[N]; ll pow_mod(ll a, ll b) {
ll ans = ;
a %= MOD;
while(b) {
if(b & ) ans = (ans * a) % MOD;
a = (a * a) % MOD;
b >>= ;
}
return ans;
}
void pre() {
fac[] = ;
for(int i = ; i < M; ++i) fac[i] = fac[i - ] * (ll)i % MOD;
afac[M - ] = pow_mod(fac[M - ], MOD - );
for(int i = M - ; i >= ; --i) afac[i - ] = afac[i] * (ll)i % MOD;
}
ll C(int n, int m) {
if(m > n) return ;
return ((fac[n] * afac[n - m] % MOD) * afac[m]) % MOD;
}
int main() {
pre();
cin >> h >> w >> n;
ll x, y;
for(int i = ; i <= n; ++i) {
cin >> x >> y;
bc[i] = (ll)x * X + y;
}
bc[++n] = (ll)h * X + w;
sort(bc + , bc + n + );
for(int i = ; i <= n; ++i) {
int xi = bc[i] / X, yi = bc[i] % X;
dp[i] = C(xi + yi - , yi - );
for(int j = ; j < i; ++j) {
int xj = bc[j] / X, yj = bc[j] % X;
if(xj > xi || yj > yi) continue;
dp[i] = (MOD + dp[i] - (dp[j] * C(xi - xj + yi - yj, yi - yj) % MOD)) % MOD;
}
}
cout << dp[n] << endl;
return ;
}
Gym100947E || codeforces 559c 组合数取模的更多相关文章
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- lucas定理解决大组合数取模
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...
随机推荐
- 正则去掉img标签的style样式
$body = '<div style="width:100px; height:20px;"><img alt="test" src=&qu ...
- 搬家到cnblogs
从openshift搬到LOFTER再到点点然后来cnblogs,晃悠一大圈,主要是没时间学习很多东西,再加上cnblogs的搜索收录情况比较好一点(百 度搜索).另外听闻百度空间bye-bye了,以 ...
- asp.net Literal
常用于动态向页面添加内容 Panel panel = new Panel(); Literal literal = new Literal(); literal.Text = "<br ...
- Google Maps API V3 之 路线服务
Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...
- marquee标签,好神奇啊...
<html><body><div style="height:190; margin-top:10; margin-bottom:10; width:96%; ...
- Linux命令--删除软连接
1,建立软链接 ln -s 源文件 目标文件 例如:ln -s /usr/hb/ /home/hb_link 2,删除软链接 正确的是:rm -rf hb_link 错误的是:rm -rf hb_li ...
- PHP之static静态变量详解(一)
什么是static静态变量?(以下为在C语言中的理解) 静态变量 类型说明符是static. 静态变量属于静态存储方式,其存储空间为内存中的静态数据区(在静态存储区内分配存储单元),该 区域中的数据在 ...
- URL处理几个关键的函数parse_url、parse_str与http_build_query
parse_url() 该函数可以解析 URL,返回其组成部分.它的用法如下: array parse_url(string $url) 此函数返回一个关联数组,包含现有 URL 的各种组成部分.如果 ...
- T-SQL 语句的理解
1.T-SQL中各子句在逻辑上按照以下顺序进行处理 . . . .. .ORDER BY 查询实例: SELECT EMPID, YEAR(ORDERDATE) AS ORDERYEAR, COUNT ...
- java封装好处和原则
/*封装好处 隐藏实际细节,提供公共的访问方式 提高了代码的复用性 提高安全性 封装原则 将不需要对外提供的内容都隐藏起来 把属性隐藏,提供公共方法对其访问.*/