题目描述

有n个同学(编号为1到n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学。

游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?

输入输出格式

输入格式:

输入共2行。

第1行包含1个正整数n表示n个人。

第2行包含n个用空格隔开的正整数T1,T2,……,Tn其中第i个整数Ti示编号为i

的同学的信息传递对象是编号为Ti的同学,Ti≤n且Ti≠i

数据保证游戏一定会结束。

输出格式:

输出共 1 行,包含 1 个整数,表示游戏一共可以进行多少轮。

输入输出样例

输入样例#1:

5
2 4 2 3 1
输出样例#1:

3

说明

样例1解释

游戏的流程如图所示。当进行完第 3 轮游戏后, 4 号玩家会听到 2 号玩家告诉他自

己的生日,所以答案为 3。当然,第 3 轮游戏后, 2 号玩家、 3 号玩家都能从自己的消息

来源得知自己的生日,同样符合游戏结束的条件。

对于 30%的数据, n ≤ 200;

对于 60%的数据, n ≤ 2500;

对于 100%的数据, n ≤ 200000。

题解:

不难看出,题目要求的是该图中包含点数最少但点数≥2的环所包含的点数。

直接对于每个点进行dfs求最小的环即可

但这种做法是O(n^2)的,考虑到n≤500,000,故需进行优化

考虑到题目中所求环为最小,那么当搜索到一个点在上一轮已经被遍历过时,其必找到另一个环,则不用向该点继续搜索。故每个点有且只有被遍历一次,时间复杂度为O(n)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#define M 210000
#define INF 123123123
using namespace std;
int nx[M]={},n,vis[M]={},t=;
bool b[M]={};
stack<int> s;
int bfs(int x){
vis[x]=++t;
if(nx[x]==x) return INF;
b[x]=; s.push(x);
while(!vis[nx[x]]){
x=nx[x];
vis[x]=++t;
b[x]=; s.push(x);
}
if(b[nx[x]]){
while(!s.empty()) b[s.top()]=,s.pop();
return vis[x]-vis[nx[x]]+;
}else{
while(!s.empty()) b[s.top()]=,s.pop();
return INF;
}
} int main(){
freopen("message.in","r",stdin);
freopen("message.out","w",stdout);
scanf("%d",&n); int minn=INF;
for(int i=;i<=n;i++) scanf("%d",nx+i);
for(int i=;i<=n;i++) if(!vis[i])
minn=min(minn,bfs(i));
cout<<minn<<endl;
}

【NOIP2015提高组】 Day1 T2 信息传递的更多相关文章

  1. Noip2015 提高组 Day1

    T1神奇的幻方 直通 思路: 制定一个lrow记录上一个数字所在的行数,lcolume记录上一个数字所在的列数,然后根据题目的描述进行更改即可 上代码: #include <iostream&g ...

  2. 【 NOIP2015 DAY1 T2 信息传递】带权并查集

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  3. noip2015 提高组day1、day2

    NOIP201505神奇的幻方   试题描述 幻方是一种很神奇的N∗N矩阵:它由数字 1,2,3,……,N∗N构成,且每行.每列及两条对角线上的数字之和都相同.    当N为奇数时,我们可以通过以下方 ...

  4. NOIP2015提高组Day1 Message

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  5. NOIP 2013 提高组 day1 T2 火柴排队 归并 逆序对

    描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑i=1n(ai−bi)2∑i=1n(ai−bi) ...

  6. 【前缀和】【前缀MAX】洛谷 P1351 NOIP2014提高组 day1 T2 联合权值

    不难发现,树中与某个点距离为2的点只可能是它的父亲的父亲.儿子的儿子 或者 兄弟,分类讨论一下即可. 只有对于兄弟我们不能暴力搞,维护一下每个节点的所有儿子的前缀和.前缀MAX就行了. #includ ...

  7. 刷题总结——子串(NOIP2015提高组)

    题目: 题目背景 NOIP2015 提高组 Day2 T2 题目描述 有两个仅包含小写英文字母的字符串 A 和 B .现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在 ...

  8. 【题解】NOIP2015提高组 复赛

    [题解]NOIP2015提高组 复赛 传送门: 神奇的幻方 \([P2615]\) 信息传递 \([P2661]\) 斗地主 \([P2668]\) 跳石头 \([P2678]\) 子串 \([P26 ...

  9. 2015 Noip提高组 Day1

    P2615 神奇的幻方 [题目描述] 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: ...

随机推荐

  1. Python[小甲鱼009了不起的分支和循环3]

    for语句语法: for 目标 in 表达式: 循环体 例子1: favourite = 'Idmask' for i in favourite: print(i, end= ' ') 上面的输出结果 ...

  2. JDBC第四篇--【数据库连接池、DbUtils框架、分页】

    1.数据库连接池 什么是数据库连接池 简单来说:数据库连接池就是提供连接的. 为什么我们要使用数据库连接池 数据库的连接的建立和关闭是非常消耗资源的 频繁地打开.关闭连接造成系统性能低下 编写连接池 ...

  3. Servlet第六篇【Session介绍、API、生命周期、应用】

    什么是Session Session 是另一种记录浏览器状态的机制.不同的是Cookie保存在浏览器中,Session保存在服务器中.用户使用浏览器访问服务器的时候,服务器把用户的信息以某种的形式记录 ...

  4. SQL三类语句

    1. DDL (Data Definition Language, 数据定义语言) CREATE: 创建数据库和表等对象 DROP: 删除数据库和表等对象 ALTER: 修改数据库和表等对象的结构 2 ...

  5. python 集合的操作

    list_1 = set([1,2,3,4,5])#print(list_1,type(list_1))list_2 = set([1,2,3,6,7,8,9,10])#print(list_2,ty ...

  6. openGPS.cn - 高精度IP定位原理,定位误差说明

    [ip定位历史] 关于IP定位,最早是通过运营商实现,每个运营商申请到的ip段,在某个范围内使用. 因此早期只能是国家为单位的基础数据. 对于比较大的国家,就进一步划分,比如,中国某通讯公司(不打广告 ...

  7. Nginx学习——Nginx基本配置

    1.Nginx的配置文件总览 Nginx配置文件详解 : http://www.cnblogs.com/hunttown/p/5759959.html nginx.conf 基本格式: worker_ ...

  8. C#设计模式之五创建者模式(Builder)【创建型】

    一.引言  今天我们要讲讲Builder模式,也就是建造者模式,当然也有叫生成器模式的.在现实生活中,我们经常会遇到一些构成比较复杂的物品,比如:电脑,它就是一个复杂的物品,它主要是由CPU.主板.硬 ...

  9. java一些问题的思考

    1.思考 为什么java规定作为程序入口点的main() 方法静态的? 在java中,main()方法是java应用程序的入口方法,也就是说,程序在运行的时候,第一个执行的方法就是main()方法,这 ...

  10. Ngnix技术研究系列2-基于Redis实现动态路由

    上篇博文我们写了个引子: Ngnix技术研究系列1-通过应用场景看Nginx的反向代理 发现了新大陆,OpenResty OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台 ...