ML: 聚类算法R包-模糊聚类
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析。FCM(Fuzzy C-Means)算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。
算法流程:
- 标准化数据矩阵;
- 建立模糊相似矩阵,初始化隶属矩阵;
- 算法开始迭代,直到目标函数收敛到极小值;
- 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
优点:相比起前面的”硬聚类“,FCM方法会计算每个样本对所有类的隶属度,这给了我们一个参考该样本分类结果可靠性的计算方法,若某样本对某类的隶属度在所有类的隶属度中具有绝对优势,则该样本分到这个类是一个十分保险的做法,反之若该样本在所有类的隶属度相对平均,则我们需要其他辅助手段来进行分类。
缺点:KNN的缺点基本它都有
模糊聚类
- cluster::fanny
- e1071::cmeans
cluster::fanny
需要R安装包
install.packages("cluster")
示例代码:
library(cluster)
iris2 <- iris[-5]
fannyz=fanny(iris2,3,metric="SqEuclidean")
summary(fannyz)
分类分布:
> fannyz$clustering
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3
[66] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2
[131] 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3
样本隶属度
> fannyz$membership
[,1] [,2] [,3]
[1,] 0.996623586 0.0010720343 0.0023043797
[2,] 0.975852543 0.0074979471 0.0166495094
[3,] 0.979825922 0.0064145785 0.0137594999
[4,] 0.967427446 0.0101075228 0.0224650314
[5,] 0.994470355 0.0017679352 0.0037617094
[6,] 0.934574112 0.0206196544 0.0448062334
[7,] 0.979491667 0.0065045178 0.0140038150
[8,] 0.999547263 0.0001412048 0.0003115325
[9,] 0.930379787 0.0219024180 0.0477177955
.......
图示显示 :clusplot(fannyz)

结果显示
> table(iris$Species,fannyz$clustering)
1 2 3
setosa 50 0 0
versicolor 0 3 47
virginica 0 37 13
e1071::cmeans
安装包代码:
install.packages("e1071")
示例代码:
> library("e1071")
> x <- iris[-5]
> result1<-cmeans(x,3,50)
> result1
Fuzzy c-means clustering with 3 clusters
Cluster centers:
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.888999 2.761093 4.364049 1.3973654
2 6.775092 3.052406 5.646882 2.0535855
3 5.003966 3.414086 1.482821 0.2535487
Memberships:
1 2 3
[1,] 0.0023043721 0.0010720485 0.996623579
[2,] 0.0166481906 0.0074975084 0.975854301
[3,] 0.0137586391 0.0064142953 0.979827066
.......
统计结果:
> table(iris$Species,result1$cluster)
1 2 3
setosa 0 0 50
versicolor 47 3 0
virginica 13 37 0
3d效果显示示例
#install.packages("scatterplot3d")
library(scatterplot3d)
scatterplot3d(result1$membership, color=result1$cluster, type="h",
angle=55, scale.y=0.7, pch=16, main="Pertinence")

参考资料:
- http://blog.csdn.net/Alex_luodazhi/article/details/47125149
- https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Fuzzy_Clustering_-_Fuzzy_C-means
ML: 聚类算法R包-模糊聚类的更多相关文章
- ML: 聚类算法R包 - 模型聚类
模型聚类 mclust::Mclust RWeka::Cobweb mclust::Mclust EM算法也称为期望最大化算法,在是使用该算法聚类时,将数据集看作一个有隐形变量的概率模型,并实现模型最 ...
- ML: 聚类算法R包-层次聚类
层次聚类 stats::hclust stats::dist R使用dist()函数来计算距离,Usage: dist(x, method = "euclidean", di ...
- ML: 聚类算法R包-网格聚类
网格聚类算法 optpart::clique optpart::clique CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇.CLI ...
- ML: 聚类算法R包 - 密度聚类
密度聚类 fpc::dbscan fpc::dbscan DBSCAN核心思想:如果一个点,在距它Eps的范围内有不少于MinPts个点,则该点就是核心点.核心和它Eps范围内的邻居形成一个簇.在一个 ...
- ML: 聚类算法R包-对比
测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...
- ML: 聚类算法R包-K中心点聚类
K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值, ...
- 聚类算法之k-均值聚类
k-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 适用数据类型:数值型数据 其工作流程:首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具 ...
- ML: 聚类算法-K均值聚类
基于划分方法聚类算法R包: K-均值聚类(K-means) stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...
- 机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现
前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样 ...
随机推荐
- Ajax 向后台提交一个 JavaScript 对象数组?
var postArray= new Array(); var temp = new Object(); temp.id='1'; temp.name='test'; postArray.push(t ...
- 基于JAX-WS的WebService实现
JAX-WS是一套Java用于开发XML Web Services的技术规范,它的实现一般有CXF.AXIS和JDK(version>=1.6),借助这些我们可以进行SOAP服务开发. CXF和 ...
- 拥抱.NET Core系列:Logging (1)
在之前我们简单介绍了 .NET Core 中的 DI组件,没来及了解的童鞋可以翻翻我之前的文章. 接下来会对 .NET Core 中的 Logging 进行介绍. 本文中使用了"Micros ...
- CJOJ 2022 【一本通】简单的背包问题(搜索)
CJOJ 2022 [一本通]简单的背包问题(搜索) Description 设有一个背包可以放入的物品重量为S,现有n件物品,重量分别是w1,w2,w3,-wn. 问能否从这n件物品中选择若干件放入 ...
- 同一个sql在不同的oracle中执行时间不一样
最近因为某些原因不得不重新配置服务器的环境,当然就是一些简单的程序运行环境,包括tomcat .oracle和其他的一些.原本觉得还蛮简单的东西,但是当我部署完成后在运行程序的过程中发现了一些隐性因数 ...
- 微信token失效时间
微信token失效时间 为了使第三方开发者能够为用户提供更多更有价值的个性化服务,微信公众平台开放了许多接口,包括自定义菜单接口.客服接口.获取用户信息接口.用户分组接口.群发接口等,开发者在调用这些 ...
- tensorflow softplus应用
1.softplus函数表达式 图像: 2.tensorflow 举例 import tensorflow as tf input=tf.constant([0,1,2,3],dtype=tf.flo ...
- 四.GC —三分钟认识JAVA回收机制(Java Garbage Collection)
这里以jdk1.8做讲解.Jdk1.8的分代去掉了永久代,只分为新生代(有的也译为年轻代)和年老代. 名词解释: 系统吞吐量:用于处理应用程序处理事务的线程数与用于GC的线程数的比. pause ti ...
- year:2017 month:7 day:20
2017-07-20 JavaScript(Dom) 1:获取节点对象 document.getElementById("html元素的id") document.getEleme ...
- 自定义Git之忽略特殊文件
有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files ...,有强迫症的童鞋心里肯定 ...