1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析。FCM(Fuzzy C-Means)算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:

  • 标准化数据矩阵;
  • 建立模糊相似矩阵,初始化隶属矩阵;
  • 算法开始迭代,直到目标函数收敛到极小值;
  • 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。

优点:相比起前面的”硬聚类“,FCM方法会计算每个样本对所有类的隶属度,这给了我们一个参考该样本分类结果可靠性的计算方法,若某样本对某类的隶属度在所有类的隶属度中具有绝对优势,则该样本分到这个类是一个十分保险的做法,反之若该样本在所有类的隶属度相对平均,则我们需要其他辅助手段来进行分类。

缺点:KNN的缺点基本它都有

模糊聚类


  • cluster::fanny 
  • e1071::cmeans 

cluster::fanny


需要R安装包

install.packages("cluster")

示例代码:

library(cluster)
iris2 <- iris[-5]
fannyz=fanny(iris2,3,metric="SqEuclidean")
summary(fannyz)

分类分布:

> fannyz$clustering
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3
[66] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2
[131] 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3

样本隶属度

> fannyz$membership
[,1] [,2] [,3]
[1,] 0.996623586 0.0010720343 0.0023043797
[2,] 0.975852543 0.0074979471 0.0166495094
[3,] 0.979825922 0.0064145785 0.0137594999
[4,] 0.967427446 0.0101075228 0.0224650314
[5,] 0.994470355 0.0017679352 0.0037617094
[6,] 0.934574112 0.0206196544 0.0448062334
[7,] 0.979491667 0.0065045178 0.0140038150
[8,] 0.999547263 0.0001412048 0.0003115325
[9,] 0.930379787 0.0219024180 0.0477177955
.......

图示显示 :clusplot(fannyz)

结果显示

> table(iris$Species,fannyz$clustering)

              1  2  3
setosa 50 0 0
versicolor 0 3 47
virginica 0 37 13

e1071::cmeans 


安装包代码:

install.packages("e1071")

示例代码:

> library("e1071")
> x <- iris[-5]
> result1<-cmeans(x,3,50)
> result1
Fuzzy c-means clustering with 3 clusters Cluster centers:
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.888999 2.761093 4.364049 1.3973654
2 6.775092 3.052406 5.646882 2.0535855
3 5.003966 3.414086 1.482821 0.2535487 Memberships:
1 2 3
[1,] 0.0023043721 0.0010720485 0.996623579
[2,] 0.0166481906 0.0074975084 0.975854301
[3,] 0.0137586391 0.0064142953 0.979827066
.......

统计结果:

> table(iris$Species,result1$cluster)

              1  2  3
setosa 0 0 50
versicolor 47 3 0
virginica 13 37 0

3d效果显示示例

#install.packages("scatterplot3d")
library(scatterplot3d)
scatterplot3d(result1$membership, color=result1$cluster, type="h",
angle=55, scale.y=0.7, pch=16, main="Pertinence")


参考资料:

ML: 聚类算法R包-模糊聚类的更多相关文章

  1. ML: 聚类算法R包 - 模型聚类

    模型聚类 mclust::Mclust RWeka::Cobweb mclust::Mclust EM算法也称为期望最大化算法,在是使用该算法聚类时,将数据集看作一个有隐形变量的概率模型,并实现模型最 ...

  2. ML: 聚类算法R包-层次聚类

    层次聚类 stats::hclust stats::dist    R使用dist()函数来计算距离,Usage: dist(x, method = "euclidean", di ...

  3. ML: 聚类算法R包-网格聚类

    网格聚类算法 optpart::clique optpart::clique CLIQUE(Clustering In QUEst)是一种简单的基于网格的聚类方法,用于发现子空间中基于密度的簇.CLI ...

  4. ML: 聚类算法R包 - 密度聚类

    密度聚类 fpc::dbscan fpc::dbscan DBSCAN核心思想:如果一个点,在距它Eps的范围内有不少于MinPts个点,则该点就是核心点.核心和它Eps范围内的邻居形成一个簇.在一个 ...

  5. ML: 聚类算法R包-对比

    测试验证环境 数据: 7w+ 条,数据结构如下图: > head(car.train) DV DC RV RC SOC HV LV HT LT Type TypeName 1 379 85.09 ...

  6. ML: 聚类算法R包-K中心点聚类

    K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值, ...

  7. 聚类算法之k-均值聚类

    k-均值聚类算法 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 适用数据类型:数值型数据 其工作流程:首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,具 ...

  8. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  9. 机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现

    前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样 ...

随机推荐

  1. Selective Search for Object Recognition 论文笔记【图片目标分割】

    这篇笔记,仅仅是对选择性算法介绍一下原理性知识,不对公式进行推倒. 前言: 这篇论文介绍的是,如果快速的找到的可能是物体目标的区域,不像使用传统的滑动窗口来暴力进行区域识别.这里是使用算法从多个维度对 ...

  2. Android Studio 运行java程序

    当我们装了Android Studio 学习安卓开发的时候,难免会要学习java,这时候,难道在重新装一个编译器吗?不需要,我们直接用 Android Studio 就可以. 1.新建一个空项目,选择 ...

  3. Django 踩过的坑(一)

    平台:win10 工具:cmd python3 刚刚学习Django搭建环境,网站还木有发布,就直接来了个大麻烦. 一切按着<Django 学习笔记(二)>这篇文章来的,在最后cmd运行服 ...

  4. sublime text 3 配置python IDE

    Python越来越受“程序猿”们的青睐.快速的开发模式,简洁的代码格式,海量的扩展,这无疑都为python的火热奠定了基础. “磨刀不误砍柴工”,一款功能强劲的IDE能帮助开发者有效的管理.编辑,运行 ...

  5. vijos1047题解

    总算编好了这一题,我表示200+行,亚历山大. 题目描述很简单,做起来不简单啊.(高精度的取模和除法不是一般的恶心!) 先说一下非高精度的一般做法. 求两个数a,b的最小公倍数,就是a.b的乘积与a. ...

  6. CCS学习(三)

    边框样式  边框线 dorder-style (top 上: bottom 下:  left 左: right 右)  样式:none | hidden | dotted | dashed | sol ...

  7. 多线程下System.Security.Cryptography.Aes CreateDecryptor报“Safe handle has been closed”的解决方案

    因为系统需要对一些核心数据进行预加载以保证查询速度. 所以在application_start 事件中启用了后台线程对相关的数据进行加载并解密(为了保证解密的效率,将AES对像做了静态对像来保存:pr ...

  8. ISO18000-6B和ISO18000-6C(EPC C1G2)标准的区别

    ISO18000-6B和ISO18000-6C(EPC C1G2)标准的区别 日期:2009-4-2 22:10:26 目前,有两个标准可供选择.一是ISO18000-6B,另一个是已被ISO接纳为I ...

  9. 【iOS干货】☞ Socket

    一.概念 Socket 字面意思又称“套接字” 网络上的两个程序(如,客户端和服务器端)通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. 应用程序一般是先通过Socket来建 ...

  10. MAC本上appium连接真机

    简单介绍一下appium连接ios真机测试环境的软件安装及配置过程: 目前我用的是desktop版本的appium, 所以MAC版本必须要升级到10.12以上,Xcode版本必须要在8.0以上,否则亲 ...