[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph
《Exploiting Relevance Feedback in Knowledge Graph》
Publication: KDD 2015
Authors: Yu Su, Shengqi Yang, etc.
Affiliation: UCSB...
1. Short description:
p { margin-bottom: 0.1in; line-height: 120% }
a:link { }
This paper formulate the novice graph relevance feedback problem, which applies relevance feedback in information retrieval area to graph query. User positive and negative feedback to inversely input the original graph query and improve the query result.
2. Focus: graph query, subgraph matching
3. Novelty: user relevance feedback; binary classifier to decide the trade-off to re-rank or re-search from graph
4. Motivation:
the new thing about this paper is it consider the ambigous of user input query.
users who do not need to understand the complexity of the schema of data graph, so the input node name, type or keywords are generally ambigous or even not in the data graph.
5. Algorithms:
the query-specific function is based on the previous paper in the same group -- SLQ "schemaless and structureless graph querying "
the new graph matching function after tuning is $g(\theta^{*} )$
The framework is as follows:
It explored the two types of inferences:
Type inference: Infer the implicit type of each query node
Context Inference: neighborhood of the entity
The cons:
In my opinion:
(1) It only explored the simple two node and three node star query
(2) The ground truth for deciding the re-rank and re-search was not clearly stated, which I think it is important to decide the runtime trade-off of the re-rank and re-search
(3) In reality, it is also not reliable and challenging to construct the ground truth for a new data graph to decide the runtime trade-off.
Reference:
Su, Yu, et al. "Exploiting relevance feedback in knowledge graph search." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph的更多相关文章
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- 聊一聊google的Knowledge Graph
什么是Knowledge Graph? 它是google用于增强它的搜索引擎的功能和提高搜索结果质量的一种技术.在2012年5月16日提出,除了提供基本的与主题相关的链接服务之外,它还能结构化与主题相 ...
- 收藏:左路Deep Learning+右路Knowledge Graph,谷歌引爆大数据
发表于2013-01-18 11:35| 8827次阅读| 来源sina微博 条评论| 作者邓侃 数据分析智能算法机器学习大数据Google 摘要:文章来自邓侃的博客.数据革命迫在眉睫. 各大公司重兵 ...
- 1. 通俗易懂解释知识图谱(Knowledge Graph)
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控 ...
- 学习笔记之知识图谱 (Knowledge Graph)
Knowledge Graph - Wikipedia https://en.wikipedia.org/wiki/Knowledge_Graph The Knowledge Graph is a k ...
- Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation(知识图谱)
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱, ...
- RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出 ...
- Efficient Knowledge Graph Accuracy Evaluation 论文笔记
前言 这篇论文主要讲的是知识图谱正确率的评估,将知识图谱的正确率定义为知识图谱中三元组表述正确的比例.如果要计算知识图谱的正确率,可以用人力一一标注是否正确,计算比例.但是实际上,知识图谱往往很大,不 ...
随机推荐
- Spring切面通知执行的顺序(Advice Order)
问题描述 如果在Spring的程序中同时定义了环绕通知(Around)和前置通知(Before)..那么,有以下问题: 1.怎么让两个切面通知都起作用 2.或者让两者切面按自己指定的顺序进行执行? 3 ...
- application 从web.xml中获取初始化参数
<span style="font-size:24px;"> </span> 1.web.xml中的配置部分 <context-param> ...
- 一次基于Vue.Js用户体验的优化
.mytitle { background: #2B6695; color: white; font-family: "微软雅黑", "宋体", "黑 ...
- java集合(4)- java中HashSet详解
HashSet 的实现 对于 HashSet 而言,它是基于 HashMap 实现的,HashSet 底层采用 HashMap 来保存所有元素,因此 HashSet 的实现比较简单,查看 HashSe ...
- 电商app开发新趋势!如何突显竞争力?
2017年是电商变化最大的一年,同时,也是最多机遇的一年,更是电商最好的时代,如最近所看到的亚马逊的市值已经超过了美国8大零售商的总和,带领美国率先走向了新零售时代;马云也在做改变,试图与线下的大卖场 ...
- js实现导航菜单栏随着屏幕的滚动进行滚动的效果
$(window).scroll(function () { var $nav = $(".floatingMenu ul li"), length = $nav.length-1 ...
- 30多个Android 开发者工具 带你开发带你飞
文中部分工具是收费的,但是绝大多数都是免费的. FlowUp 这是一个帮助你跟踪app整体性能的工具,深入分析关键的性能数据如FPS, 内存, CPU, 磁盘, 等等.FlowUp根据用户数量收费. ...
- map,zip,reduce函数
lt=range(5,10) lw=range(8,13) def mul(a,b): return a*b def mul_list(param1,param2): return_list=[] f ...
- Spring+SpringMVC+MyBatis深入学习及搭建(十二)——SpringMVC入门程序(一)
转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/6999743.html 前面讲到:Spring+SpringMVC+MyBatis深入学习及搭建(十一)——S ...
- 利用angular控制元素的显示和隐藏
<!DOCTYPE html> <html lang="en" ng-app="myapp"> <head> <met ...