[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph
《Exploiting Relevance Feedback in Knowledge Graph》
Publication: KDD 2015
Authors: Yu Su, Shengqi Yang, etc.
Affiliation: UCSB...
1. Short description:
p { margin-bottom: 0.1in; line-height: 120% }
a:link { }
This paper formulate the novice graph relevance feedback problem, which applies relevance feedback in information retrieval area to graph query. User positive and negative feedback to inversely input the original graph query and improve the query result.
2. Focus: graph query, subgraph matching
3. Novelty: user relevance feedback; binary classifier to decide the trade-off to re-rank or re-search from graph
4. Motivation:
the new thing about this paper is it consider the ambigous of user input query.
users who do not need to understand the complexity of the schema of data graph, so the input node name, type or keywords are generally ambigous or even not in the data graph.
5. Algorithms:
the query-specific function is based on the previous paper in the same group -- SLQ "schemaless and structureless graph querying "
the new graph matching function after tuning is $g(\theta^{*} )$

The framework is as follows:

It explored the two types of inferences:
Type inference: Infer the implicit type of each query node
Context Inference: neighborhood of the entity
The cons:
In my opinion:
(1) It only explored the simple two node and three node star query
(2) The ground truth for deciding the re-rank and re-search was not clearly stated, which I think it is important to decide the runtime trade-off of the re-rank and re-search
(3) In reality, it is also not reliable and challenging to construct the ground truth for a new data graph to decide the runtime trade-off.
Reference:
Su, Yu, et al. "Exploiting relevance feedback in knowledge graph search." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015.
[Paper Reading]--Exploiting Relevance Feedback in Knowledge Graph的更多相关文章
- Deep Learning 和 Knowledge Graph howto
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers fo ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- 聊一聊google的Knowledge Graph
什么是Knowledge Graph? 它是google用于增强它的搜索引擎的功能和提高搜索结果质量的一种技术.在2012年5月16日提出,除了提供基本的与主题相关的链接服务之外,它还能结构化与主题相 ...
- 收藏:左路Deep Learning+右路Knowledge Graph,谷歌引爆大数据
发表于2013-01-18 11:35| 8827次阅读| 来源sina微博 条评论| 作者邓侃 数据分析智能算法机器学习大数据Google 摘要:文章来自邓侃的博客.数据革命迫在眉睫. 各大公司重兵 ...
- 1. 通俗易懂解释知识图谱(Knowledge Graph)
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控 ...
- 学习笔记之知识图谱 (Knowledge Graph)
Knowledge Graph - Wikipedia https://en.wikipedia.org/wiki/Knowledge_Graph The Knowledge Graph is a k ...
- Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation(知识图谱)
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱, ...
- RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出 ...
- Efficient Knowledge Graph Accuracy Evaluation 论文笔记
前言 这篇论文主要讲的是知识图谱正确率的评估,将知识图谱的正确率定义为知识图谱中三元组表述正确的比例.如果要计算知识图谱的正确率,可以用人力一一标注是否正确,计算比例.但是实际上,知识图谱往往很大,不 ...
随机推荐
- Fast Walsh-Hadamard Transform——快速沃尔什变换
模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$ ...
- jmeter IP欺骗功能实现
使用过loadrunner的同学,应该都了解有个IP欺骗功能,jmeter遇到类似需求怎样实现呢? 环境:windows7,jdk1.8,jmeter3.1 使用IP欺骗功能前提是本地有多个可用IP, ...
- Linux Academy Learn Notes
Linux Essentials Certification Globbing ls ?.txt --- ? stands for one character while * means one or ...
- Android相机是如何获取到图像的
在研究zxing的过程中,脑袋中一直有个疑惑,那个相机并没有拍照,它是怎么获取图像的 带着这个疑惑查看Camera源码 Camera源码中有这样一个接口: public interface Previ ...
- Telnet的开启及使用
1首先在控制面板找到程序和功能,双击点开. 2,点击打开或关闭WINDOWS功能 3勾选上这两项 点击确定即可. ------------------------------------------- ...
- org.apache.commons.lang下的工具类
1.org.apache.commons.lang.ArrayUtils 例子 package chongqingyusp; import java.util.Map; import org.apac ...
- 【面向对象设计原则】之里氏替换原则(LSP)
里氏代换原则由2008年图灵奖得主.美国第一位计算机科学女博士Barbara Liskov教授和卡内基·梅隆大学Jeannette Wing 教授于1994年提出,所以使用的是这位女博士的性命名的一个 ...
- 百度前端技术学院—-小薇学院(HTML+CSS课程任务)
任务一:零基础HTML编码 课程概述 作业提交截止时间:04-24 重要说明 百度前端技术学院的课程任务是由百度前端工程师专为对前端不同掌握程度的同学设计.我们尽力保证课程内容的质量以及学习难度的合理 ...
- MySQL主从搭建
主服务器配置 1.编辑配置文件 # 如果不存在,就手动创建一个 vim /etc/my.cnf 在配置文件加入如下值: [mysqld] # 唯一的服务辨识号,数值位于 1 到 2^32-1之间. # ...
- Building Particle Filters and Particle MCMC in NIMBLE
This example shows how to construct and conduct inference on a state space model using particle filt ...