HDU 1010 Tempter of the Bone【DFS经典题+奇偶剪枝详解】
Tempter of the Bone
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 125945 Accepted Submission(s): 33969
doggie found a bone in an ancient maze, which fascinated him a lot.
However, when he picked it up, the maze began to shake, and the doggie
could feel the ground sinking. He realized that the bone was a trap, and
he tried desperately to get out of this maze.
The maze was a
rectangle with sizes N by M. There was a door in the maze. At the
beginning, the door was closed and it would open at the T-th second for a
short period of time (less than 1 second). Therefore the doggie had to
arrive at the door on exactly the T-th second. In every second, he could
move one block to one of the upper, lower, left and right neighboring
blocks. Once he entered a block, the ground of this block would start to
sink and disappear in the next second. He could not stay at one block
for more than one second, nor could he move into a visited block. Can
the poor doggie survive? Please help him.
input consists of multiple test cases. The first line of each test case
contains three integers N, M, and T (1 < N, M < 7; 0 < T <
50), which denote the sizes of the maze and the time at which the door
will open, respectively. The next N lines give the maze layout, with
each line containing M characters. A character is one of the following:
'X': a block of wall, which the doggie cannot enter;
'S': the start point of the doggie;
'D': the Door; or
'.': an empty block.
The input is terminated with three 0's. This test case is not to be processed.
4 4 5
S.X.
..X.
..XD
....
3 4 5
S.X.
..X.
...D
0 0 0

这道题可以不剪枝操作,也不会T了!
不懂剪枝的看这里:DFS中的奇偶剪枝学习笔记
这里说下不剪枝的技巧:为了避免多余的边界控制,可以从i=1,j=1开始读迷宫,在读之前将迷宫初始化为全部'X',即都为墙。这样在迷宫读取完毕后,周围就会自动出现一圈'X',这样就可以在搜索的时候只判断遇到'X'就return了。
这里贴一下深搜代码,不管剪不剪枝,这一段是可以不用修改的。
inline int DFS(int x,int y,int T)
{
if(mp[x][y]!='.'&&mp[x][y]!='S')//碰到X即为边界返回
return ;
if(T==)//剩一步时即可判断是否为出口,找到返回1
{
if(mp[x-][y]=='D')
return ;
if(mp[x+][y]=='D')
return ;
if(mp[x][y-]=='D')
return ;
if(mp[x][y+]=='D')
return ;
return ;
}
else
{
mp[x][y]='X';//标记走过
if(mp[x-][y]=='.'&&DFS(x-,y,T-))
return ;
if(mp[x+][y]=='.'&&DFS(x+,y,T-))
return ;
if(mp[x][y-]=='.'&&DFS(x,y-,T-))
return ;
if(mp[x][y+]=='.'&&DFS(x,y+,T-))
return ;
mp[x][y]='.';//还原走过
return ;
}
return ;
}
关于奇偶剪枝
首先举个例子,有如下4*4的迷宫,'.'为可走路段,'X'为障碍不可通过
S...
....
....
...D
从S到D的最短距离为两点横坐标差的绝对值+两点纵坐标差的绝对值 = abs(Sx - Dx) + abs(Sy - Dy) = 6,这个应该是显而易见的。
遇到有障碍的时候呢
S.XX
X.XX
...X
...D
你会发现不管你怎么绕路,最后从S到达D的距离都是最短距离+一个偶数,这个是可以证明的
而我们知道:
奇数 + 偶数 = 奇数
偶数 + 偶数 = 偶数
因此不管有多少障碍,不管绕多少路,只要能到达目的地,走过的距离必然是跟最短距离的奇偶性是一致的。
所以如果我们知道从S到D的最短距离为奇数,那么当且仅当给定的步数T为奇数时,才有可能走到。如果给定的T的奇偶性与最短距离的奇偶性不一致,那么我们就可以直接判定这条路线永远不可达了。
这里还有个小技巧,我们可以使用按位与运算来简化奇偶性的判断。我们知道1的二进制是1,而奇数的二进制最后一位一定是1,而偶数的二进制最后一位一定是0。所以如果数字&1的结果为1,那么数字为奇数,反之为偶数。
下面给出奇偶剪枝后的main函数代码:
int main()
{
int sx,sy,dx,dy;
int N,M,T;
while(scanf("%d%d%d",&N,&M,&T)&&N&&M&&T)
{
getchar();
memset(mp,'X',sizeof(mp));//把周围边界全部变成X
for(int i=;i<=N;i++)//从1开始读,留出边界位置
{
for(int j=;j<=M;j++)
{
scanf("%c",&mp[i][j]);
if(mp[i][j]=='S')
{
sx=i;
sy=j;
}
else if(mp[i][j]=='D')
{
dx=i;
dy=j;
}
}
getchar();
}
if((abs(sx-dx)+abs(sy-dy)-T)&)//奇偶剪枝,对1用按位与运算求奇偶
printf("NO\n");
else if(DFS(sx,sy,T)==)
printf("YES\n");
else printf("NO\n");
}
return ;
}
所以完整的AC代码如下:
#include <bits/stdc++.h>
using namespace std;
char mp[][];
inline int DFS(int x,int y,int T)
{
if(mp[x][y]!='.'&&mp[x][y]!='S')//碰到X即为边界返回
return ;
if(T==)//剩一步时即可判断是否为出口,找到返回1
{
if(mp[x-][y]=='D')
return ;
if(mp[x+][y]=='D')
return ;
if(mp[x][y-]=='D')
return ;
if(mp[x][y+]=='D')
return ;
return ;
}
else
{
mp[x][y]='X';//标记走过
if(mp[x-][y]=='.'&&DFS(x-,y,T-))
return ;
if(mp[x+][y]=='.'&&DFS(x+,y,T-))
return ;
if(mp[x][y-]=='.'&&DFS(x,y-,T-))
return ;
if(mp[x][y+]=='.'&&DFS(x,y+,T-))
return ;
mp[x][y]='.';//还原走过
return ;
}
return ;
}
int main()
{
int sx,sy,dx,dy;
int N,M,T;
while(scanf("%d%d%d",&N,&M,&T)&&N&&M&&T)
{
getchar();
memset(mp,'X',sizeof(mp));//把周围边界全部变成X
for(int i=;i<=N;i++)//从1开始读,留出边界位置
{
for(int j=;j<=M;j++)
{
scanf("%c",&mp[i][j]);
if(mp[i][j]=='S')
{
sx=i;
sy=j;
}
else if(mp[i][j]=='D')
{
dx=i;
dy=j;
}
}
getchar();
}
if((abs(sx-dx)+abs(sy-dy)-T)&)//奇偶剪枝,对1用按位与运算求奇偶
printf("NO\n");
else if(DFS(sx,sy,T)==)
printf("YES\n");
else printf("NO\n");
}
return ;
}
HDU 1010 Tempter of the Bone【DFS经典题+奇偶剪枝详解】的更多相关文章
- hdu 1010 Tempter of the Bone(深搜+奇偶剪枝)
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- HDU 1010 Tempter of the Bone --- DFS
HDU 1010 题目大意:给定你起点S,和终点D,X为墙不可走,问你是否能在 T 时刻恰好到达终点D. 参考: 奇偶剪枝 奇偶剪枝简单解释: 在一个只能往X.Y方向走的方格上,从起点到终点的最短步数 ...
- HDU 1010 Tempter of the Bone(DFS+奇偶剪枝)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 题目大意: 输入 n m t,生成 n*m 矩阵,矩阵元素由 ‘.’ 'S' 'D' 'X' 四 ...
- hdu.1010.Tempter of the Bone(dfs+奇偶剪枝)
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- HDU 1010 Tempter of the Bone (DFS+可行性奇偶剪枝)
<题目链接> 题目大意:一个迷宫,给定一个起点和终点,以及一些障碍物,所有的点走过一次后就不能再走(该点会下陷).现在问你,是否能从起点在时间恰好为t的时候走到终点. 解题分析:本题恰好要 ...
- hdu - 1010 Tempter of the Bone (dfs+奇偶性剪枝) && hdu-1015 Safecracker(简单搜索)
http://acm.hdu.edu.cn/showproblem.php?pid=1010 这题就是问能不能在t时刻走到门口,不能用bfs的原因大概是可能不一定是最短路路径吧. 但是这题要过除了细心 ...
- (step4.3.1) hdu 1010(Tempter of the Bone——DFS)
题目大意:输入三个整数N,M,T.在接下来的N行.M列会有一系列的字符.其中S表示起点,D表示终点. .表示路 . X表示墙...问狗能有在T秒时到达D.如果能输出YES, 否则输出NO 解题思路:D ...
- HDU 1010 Tempter of the Bone DFS(奇偶剪枝优化)
需要剪枝否则会超时,然后就是基本的深搜了 #include<cstdio> #include<stdio.h> #include<cstdlib> #include ...
- HDOJ.1010 Tempter of the Bone (DFS)
Tempter of the Bone [从零开始DFS(1)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1010 Tem ...
随机推荐
- Intellij IDEA 像eclipse那样给maven添加依赖
打开pom.xml,在它里面使用快捷键:ALT+Insert ---->点击dependency 再输入想要添加的依赖关键字,比如:输个spring 出现下图: 根据需求选择版本,完成以后 ...
- bzoj 4013: [HNOI2015]实验比较
Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...
- Docker(六):Docker网络配置进阶
1.Docker集群网络配置之Weave Weave是Github上一个比较热门的Docker容器网络方案,具有非常良好的易用性且功能强大.仓库地址:https://github.com/weavew ...
- Effective Java 第三版——12. 始终重写 toString 方法
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- Java的演化-Java8实战笔记
一个语言要想一直有活力,它也需要跟随着时代的变化去进步,Java作为一个古老的语言,它其实有太多的历史包袱,在改变的过程中需要考虑很多,但是它也在慢慢的演变,巩固自己的城墙,不让自己被遗忘在历史中(不 ...
- centos 命令
1.查看占用端口的进程 netstat -lnp|grep 3000(3000为端口号) Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statis ...
- SVG 入门——理解viewport,viewbox,preserveAspectRatio
工欲善其事必先利其器,没有真正搞懂SVG里的viewport,viewbox, preserveAspectRatio这三个属性,就很容易遇到坑,最近写项目用到svg这三个属性被我一眼就略过 ,后来发 ...
- python中的if __name__=='__main__': main()解析
python中我们会看到一段代码是这样的: if __name__=='__main__': main() 这段代码的什么意思,我们可以知道代码的意思是如果__name__=='__main__'为T ...
- Gulp自动化构建工具的简单使用
相关网站 gulp官方网址:http://gulpjs.com gulp中文网站:http://www.gulpjs.com.cn/ gulp插件地址:http://gulpjs.com/plugin ...
- 【Java框架型项目从入门到装逼】第四节 - 编写第一个Servlet程序
在开始这一节之前呢,我们还需要把Tomcat配置到Eclipse中,配置的方式很简单,打开Eclipse,Window,Preferences,进入到这个页面: 将Tomcat的安装目录配置到Ecli ...