考试最后半个小时才做这道题。十分钟写了个暴力还写挂了。。最后默默输出n。菜鸡一只。

这道题比较好看出来是动规。首先我们要明确一点。因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比一直拔高到j更优。因为j~n变高了对于答案是有利的。

我们定义f[i][j]表示到第i个点前面拔高j次的最大剩余数。在i点的高度为hei[i]+j(因为前面拔高j次,最终都会拔高到n)。所以我们要找在高度小于hei[i]+j,次数小于j里面最大剩余数+1去更新。而找这个有限制的二维前缀最大值,可以用二维树状数组去维护。

注意:

①树状数组第一维最大是heimax+k,第二维最大为k,而不是n

②k可以为0,但是如果为0的话树状数组是跳不出来的。所以我们初始就让k++,让k=1代表k=0

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
#define pos2(i,a,b) for(int i=(a);i>=(b);i--)
#define N 11000
int n,k;
int hei[N];
int f[N][510];
int c[N][510];
int maxhei;
int lowbit(int x){
	return x&(-x);
}
void add(int i,int j,int num){
	for(int ii=i;ii<=maxhei+k;ii+=lowbit(ii))
	  for(int jj=j;jj<=k;jj+=lowbit(jj))
	    c[ii][jj]=max(c[ii][jj],num);
}
int tot(int i,int j){
	int sum=0;
	for(int ii=i;ii;ii-=lowbit(ii))
	  for(int jj=j;jj;jj-=lowbit(jj))
	    sum=max(sum,c[ii][jj]);
	return sum;
}
int main(){
	scanf("%d%d",&n,&k);
	pos(i,1,n){
		scanf("%d",&hei[i]);
		maxhei=max(maxhei,hei[i]);
	}
	k++;
	pos(i,1,n){
		pos2(j,k,1){
			f[i][j]=max(f[i][j],tot(hei[i]+j,j)+1);
			add(hei[i]+j,j,f[i][j]);
		}
	}
	cout<<tot(maxhei+k,k);
	while(1);
	return 0;
}

  

[Scoi2014]方伯伯的玉米田 二维树状数组+动态规划的更多相关文章

  1. [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp

    我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...

  2. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

  3. SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1971  Solved: 961[Submit][St ...

  4. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  5. bzoj 3594: [Scoi2014]方伯伯的玉米田【二维树状数组+dp】

    设f[i][j]为前i棵玉米被拔高了j(因为是单调不降所以前面越高越好,所以每次拔一个前缀),转移是f[i][j]=f[k][l]+1,l<=j,a[k]+l<=a[i]+j,然后用二维树 ...

  6. BZOJ 3594 [Scoi2014]方伯伯的玉米田(二维树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3594 [题目大意] 给出一个数列,选出k个区间使得区间内数全部加1, 求k次操作之后最 ...

  7. bzoj 3594: [Scoi2014]方伯伯的玉米田

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MB Submit: 1399  Solved: 627 [Submit][ ...

  8. bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 314  Solved: 132[Submit][Sta ...

  9. 【题解】Luogu P3287 [SCOI2014]方伯伯的玉米田

    原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)= ...

随机推荐

  1. 探索Windows命令行系列(6):活用批处理解决实际问题

    1.批量修改文件名 2.批量重启服务 3.全盘搜索指定文件 3.1.全盘搜索名称为 mm.jpg 的文件,获取其全路径 3.2.查找系统中所有名称以 .docx 结尾的文件 4.调用可执行程序 4.1 ...

  2. 执行3小时超长SQL的分析优化过程:从索引遇见IS NULL,到最佳实践

    月底高峰期,对一个典型项目抽查分析时,发现了一个超级慢.全表扫描的SQL,语句很简单,AWR中赫然在列,在我统计的截止时间内还没有结束... 使用v$active_session_history进一步 ...

  3. 5.Smart使用内置函数或者自定义函数

    1.使用内置函数 例如使用date函数 {"Y-m-d"|date:$time}格式{第一个参数|方法:第二个参数:第三个参数}即可转换成 2016-07-19  2.使用resi ...

  4. Java基础(5)- 输出输入

    输出输入 public class Input { public static void main (String[] args){ try { /** * 打开文件流进行读取 */ Scanner ...

  5. 【Socket】Java Socket基础编程

    Socket是Java网络编程的基础,了解还是有好处的, 这篇文章主要讲解Socket的基础编程.Socket用在哪呢,主要用在进程间,网络间通信.本篇比较长,特别做了个目录: 一.Socket通信基 ...

  6. Matlab: 白噪声与曲线拟合

    在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍. 为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子: 用白噪声产生模拟信号: ...

  7. FileInputStreamTest

    package JBJADV003;import java.io.FileNotFoundException;import java.io.IOException;import java.io.Inp ...

  8. Samba远程代码执行漏洞(CVE-2017-7494)本地复现

    一.复现环境搭建 搭建Debian和kali两个虚拟机: 攻击机:kali (192.168.217.162): 靶机:debian (192.168.217.150). 二.Debian安装并配置s ...

  9. php与MySQL(基本操作)

    PHP连接 MySQL 在我们访问 MySQL 数据库前,我们需要先连接到数据库服务器,连接服务器,我们使用mysqli_connect()函数. 在使用这个函数之前,我们首先来看一下这个函数的语法: ...

  10. Ubuntu14.04_x64_Caffe_GPU环境配置

    为了让Caffe支持GPU模式,需要安装GPU和CUDA Toolkit,依据NVIDIA官方教程以ubuntu14.04_X64安装cuda8.0,配置Gpu为例如下所示: 1.检查安装环境,是否具 ...