有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念。在读《神经网络原理》的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想。

  先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S。

  这样之后才有VC维的定义:H的VC维表示为VC(H) ,指能够被H分散的最大集合的大小。若H能分散任意大小的集合,那么VC(H)为无穷大。在《神经网络原理》中有另一种记号:对于二分总体F,其VC维写作VCdim(F)。

  通常定义之后,会用二维线性分类器举例说明为什么其VC维是3,而不能分散4个样本的集合,这里也就是容易产生困惑的地方。下面进行解释。

  对于三个样本点的情况,下面的S1所有的标记方式是可以使用线性分类器进行分类的,因此其VC维至少为3(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf):

    

  虽然存在下面这种情况的S2,其中一种标记方式无法用线性分类器分类(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf)

          

  但这种情况并不影响,这是因为,上一种的S1中,我们的H={二维线性分类器}可以实现其所有可能标签情况的分类,这和S2不能用H分散无关。

  而对于4个样本点的情况,我们的H不能实现其所有可能标签情况的分类(这是经过证明的,过程不详)如下图中某个S和其中一种标签分配情况:

  

        

  可见,H={二维线性分类器}的VC维是3。

  从这个解释过程可以看出,对于VC维定义理解的前提是先理解分散的定义。分散中的集合S是事先选定的,而VC维是能分散集合中基数(即这里的样本数)最大的。因此,当VC(H)=3时,也可能存在S',|S'|=3但不能被H分散;而对于任意事先给定的S",|S"|=4,H不能对其所有可能的标签分配方式进行分散。这里所谓“事先给定”可以看作其点在平面上位置已定,但所属类别未定(即可能是任意一种标签分配)

VC维含义的个人理解的更多相关文章

  1. VC维含义

    VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料, ...

  2. 【转载】VC维,结构风险最小化

    以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x ...

  3. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  4. VC维的来龙去脉——转载

    VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...

  5. VC维的来龙去脉(转)

    本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...

  6. svm、经验风险最小化、vc维

    原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化 ...

  7. VC维

    vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的.该理论试图从统计学的角度解释学习的过程.而VC ...

  8. Computer Science Theory for the Information Age-5: 学习理论——VC维的定义以及一些例子

    学习理论——VC维的定义以及一些例子 本文主要介绍一些学习理论上的东西.首先,我们得明确,从训练集上学习出来的分类器的最终目标是用于预测未知的样本,那么我们在训练的时候该用多少的样本才能使产生的分类器 ...

  9. VC维与DNN的Boundary

    原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...

随机推荐

  1. 【详细资料】ICN6202:MIPI DSI转LVDS芯片简介

    ICN6202功能MIPI DSI转LVDS,分辨率1920*1200,封装QFN40

  2. java面向对象(三)之抽象类,接口,向上转型

    java类 java类分为普通类和抽象类,接口,上一节我大概讲了java类的一般格式,今天将抽象类和接口.同时讲一下它们是怎样存储的. 最重要的是理解为什么要有抽象和接口,这样学下来你猜不会迷茫,才能 ...

  3. 高阶自定义View --- 粒子变幻、隧道散列、组合文字

    高阶自定义View --- 粒子变幻.隧道散列.组合文字 作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:h ...

  4. poj 3592 缩点+SPFA

    题意:给出一个矩阵,其中#代表墙,不可走,0-9代表权值,*代表可以选择传送.求从0,0点开始出发能获得最大权值. 思路:因为*的出现会有环的情况,先建图连边,将环进行Tarjan缩点,之后再从0,0 ...

  5. 媒体查询media参数以及其兼容性问题

    一.设置meta标签 在使用媒体查询media之前我们需要先设置meta标签,对设备的缩放等参数进行设定. <!--设置缩放和绘制--> <meta name="viewp ...

  6. CCIE-MPLS VPN-实验手册(中卷)

    5:MPLS VPN PE CE OSPF 实验1 5.1 实验拓扑 5.2 实验需求 a. R1 R2 R3 组成P-NETWORK,底层协议采用EIGRP b. R1 R2 R3 直连链路启用LD ...

  7. js中面向对象的写法

    function Circle(r){ this.r = r; }//构造(实例对象的)函数[思路二:这是一个类] Circle.PI = 3.14159; //属性 Circle.prototype ...

  8. 软件工程(GZSD2015)学生博客列表

    2015年贵州师范大学软件工程课程学生博客列表 陈小丽 郑倩 唐洁 周娟 李利思 肖俊 罗文豪 周静 徐明艳 毛涛 邓洪虹 岳庆 李盼 安坤 何亚 涂江凤 张义平 杨明颢 杨家堂 胡贵玲 寿克霞 吴明 ...

  9. 【Beta】 第二次Daily Scrum Meeting

    一.本次会议为第二次meeting会议 二.时间:13:30AM-13:55AM 地点:禹州 三.会议站立式照片 四.今日任务安排 成员 昨日任务 今日任务 林晓芳 对已完成的功能进行进一步测试,以便 ...

  10. 团队作业8——第二次项目冲刺(Beta阶段)5.18

    1.当天站立式会议照片 会议内容: 本次会议为第一次会议 本次会议在陆大楼2楼召开,本次会议内容: ①:部署第二次敏捷冲刺的计划 ②:做第一天任务的详细分工 ③:规定完成时间是在第二天之前 ④:遇到困 ...