有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念。在读《神经网络原理》的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想。

  先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S。

  这样之后才有VC维的定义:H的VC维表示为VC(H) ,指能够被H分散的最大集合的大小。若H能分散任意大小的集合,那么VC(H)为无穷大。在《神经网络原理》中有另一种记号:对于二分总体F,其VC维写作VCdim(F)。

  通常定义之后,会用二维线性分类器举例说明为什么其VC维是3,而不能分散4个样本的集合,这里也就是容易产生困惑的地方。下面进行解释。

  对于三个样本点的情况,下面的S1所有的标记方式是可以使用线性分类器进行分类的,因此其VC维至少为3(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf):

    

  虽然存在下面这种情况的S2,其中一种标记方式无法用线性分类器分类(图片来自于斯坦福机器学习公开课的materials,cs229-notes4.pdf)

          

  但这种情况并不影响,这是因为,上一种的S1中,我们的H={二维线性分类器}可以实现其所有可能标签情况的分类,这和S2不能用H分散无关。

  而对于4个样本点的情况,我们的H不能实现其所有可能标签情况的分类(这是经过证明的,过程不详)如下图中某个S和其中一种标签分配情况:

  

        

  可见,H={二维线性分类器}的VC维是3。

  从这个解释过程可以看出,对于VC维定义理解的前提是先理解分散的定义。分散中的集合S是事先选定的,而VC维是能分散集合中基数(即这里的样本数)最大的。因此,当VC(H)=3时,也可能存在S',|S'|=3但不能被H分散;而对于任意事先给定的S",|S"|=4,H不能对其所有可能的标签分配方式进行分散。这里所谓“事先给定”可以看作其点在平面上位置已定,但所属类别未定(即可能是任意一种标签分配)

VC维含义的个人理解的更多相关文章

  1. VC维含义

    VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料, ...

  2. 【转载】VC维,结构风险最小化

    以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x ...

  3. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  4. VC维的来龙去脉——转载

    VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffd ...

  5. VC维的来龙去脉(转)

    本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. H ...

  6. svm、经验风险最小化、vc维

    原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化 ...

  7. VC维

    vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的.该理论试图从统计学的角度解释学习的过程.而VC ...

  8. Computer Science Theory for the Information Age-5: 学习理论——VC维的定义以及一些例子

    学习理论——VC维的定义以及一些例子 本文主要介绍一些学习理论上的东西.首先,我们得明确,从训练集上学习出来的分类器的最终目标是用于预测未知的样本,那么我们在训练的时候该用多少的样本才能使产生的分类器 ...

  9. VC维与DNN的Boundary

    原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effecti ...

随机推荐

  1. 常用Git操作

    --------------------git-------------------- 1.简介     1.Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.[1]  ...

  2. C++内存布局详解

    一个由C/C++编译的程序除了存放函数二进制代码的程序代码段(code段)外,数据占用的内存大致分为以下几个部分: 1.栈区(stack) 存放局部变量.函数参数.返回数据.返回地址等.系统自动分配释 ...

  3. spring配置和注解事务同时存在导致的事务嵌套

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt123 首先先看配置文件: [html] view plaincopy < ...

  4. WCF(三)分布式事务

    最近在学WCF,所以有两个设想疑问(菜鸟多疑问): 如果有WCF服务A,WCF服务B,客户端调用WCF服务A插入一条数据,然后再调用服务B也插入一条数据,然而服务B出错了进行了回滚,服务A能不能也进行 ...

  5. poj 1014多重背包

    题意:给出价值为1,2,3,4,5,6的6种物品数量,问是否能将物品分成两份,使两份的总价值相等. 思路:求出总价值除二,做多重背包,需要二进制优化. 代码: #include<iostream ...

  6. poj 3177-3352边双联通

    买一送一啊  3177和3352的区别在于3177数据有重边!但是我先做3177的  那么就直接ctrl+c+v搞3352了~. 题意:给一个无向图,要令每个点之间至少有两条不重合的路,需要至少加多少 ...

  7. 【2017集美大学1412软工实践_助教博客】团队作业7——Alpha冲刺之事后诸葛亮

    题目 团队作业7: http://www.cnblogs.com/happyzm/p/6827853.html 团队成绩 评分项目 变更管理 设计/实现 测试/发布 团队的角色,管理,合作 总结 全组 ...

  8. 团队作业8——第二次项目冲刺(Bata版本)--第二天

    一.Daily Scrum Meeting照片 二.燃尽图 三.项目进展 学号 成员 贡献比 201421123001 廖婷婷 15% 201421123002 翁珊 17% 201421123004 ...

  9. java课程设计--We Talk(201521123061)

    java课程设计--We Talk(201521123061) 团队博客链接:http://www.cnblogs.com/slickghost/ 数据库 一.通过Dao模式建立与数据库的连接 1.数 ...

  10. 201521123101 《Java程序设计》第6周学习总结

    1. 本周学习总结 1.面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 2. 书面作业 1.clone方法 1.1 Object对象中 ...