YAPTCHA

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 875    Accepted Submission(s): 458

Problem Description
The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart
on their webpages. In short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle.





However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program).



The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute




where [x] denotes the largest integer not greater than x.
 
Input
The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).
 
Output
For each n given in the input output the value of Sn.
 
Sample Input
13
1
2
3
4
5
6
7
8
9
10
100
1000
10000
 
Sample Output
0
1
1
2
2
2
2
3
3
4
28
207
1609
 
Source

Central European Programming Contest 2008

威尔逊定理:当( p -1 )! ≡ -1 ( mod p ) 时,p为素数。

证明如下

充分性:

当p不是素数,那么令p=a*b ,其中1 < a < p-1 ,1 < b < p-1.

(1)若a≠b,

因为(p-1)!=1*2*...*a*...*b*...*p-1,

所以(p-1)!≡ 0 (mod a)

(p-1)!≡ 0 (mod b)

可得(p-1)!≡ 0 (mod a*b) ,

即 (p-1)!≡ 0 (mod p)

与( p -1 )! ≡ -1 ( mod p )  矛盾

(2)若a=b

因为(p-1)!=1*2*...*a*...*2a*...*p-1.

所以(p-1)!≡ 0 (mod a)

(p-1)!≡ 0 (mod 2a)

可得(p-1)!≡ 0 (mod a*2a) => (p-1)!≡ 0 (mod a*a) ,

即 (p-1)!≡ 0 (mod p)

与( p -1 )! ≡ -1 ( mod p )  矛盾

因此p只能是素数。

必要性:

当p为2,( p -1 )! ≡ -1 ( mod p ) 显然成立

当p为3,( p -1 )! ≡ -1 ( mod p ) 显然成立

对于p>=5,令M={2,3,4,...,p-2}.

对于a∈M,令N={a,2*a,3*a,4*a,....(p-2)*a,(p-1)*a}

令1 <= t1 <= p-1 ,1 <= t2 <= p-1,t1 ≠ t2

那么t1*a∈N,t2*a∈N。

若t1*a≡t2*a (mod p) ,那么|t1-t2|*a ≡ 0 (mod p)。

因为|t1-t2|*a∈N,与N中元素不能被p除尽矛盾。

所以t1*a≡t2*a不成立。

那么N中元素对p取模后形成的集合为{1,2,3,4,...,p-1}.

设x*a ≡ 1 (mod p)。

当x=1时, x*a=a, 对p取模不为1,所以不成立。

当x=p-1时,(p-1)*a=p*a-a, 对p取模不为1,所以不成立。

当x=a时,a*a≡1 (mod p),可得(a+1)*(a-1)≡ 0 (mod p),a=1或a=p-1 ,所以不成立。

综上所述,x,a∈M,并且当a不同时,x也随之不同。

所以,M集合中每一个元素a都能够找到一个与之配对的x,使得x*a ≡ 1 (mod p).

(p-1)!=1*2*3*...p-1

=1*(2*x1)*(3*x3)*...*(p-1)

所以, (p-1)!≡1*(p-1)    (mod p)

即,(p-1)!≡-1     (mod p)

证明完毕

#include <bits/stdc++.h>
using namespace std; #define mem(a) memset(a, 0, sizeof(a))
const int maxn = 1e6+100;
int ans[maxn*3+100]; int isprime(int n) {
if (n == 1) return 0;
if (n == 2) return 1;
for (int i = 2; i*i<=n; i++) {
if (n%i == 0) return 0;
}
return 1;
} void init() {
mem(ans);
for (int i = 1; i<maxn; i++) {
if (isprime(i*3+7)) ans[i] = ans[i-1]+1;
else ans[i] = ans[i-1];
}
} int main() {
init();
int t;
scanf("%d", &t);
while (t --) {
int n;
scanf("%d", &n);
printf("%d\n",ans[n]);
} return 0;
}

HDU2973(威尔逊定理)的更多相关文章

  1. hdu2973-YAPTCHA-(欧拉筛+威尔逊定理+前缀和)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. 威尔逊定理--HDU2973

    参考博客 HDU-2973 题目 Problem Description The math department has been having problems lately. Due to imm ...

  3. hdu2973 YAPTCHA【威尔逊定理】

    <题目链接> 题目大意: The task that is presented to anyone visiting the start page of the math departme ...

  4. hdu5391 Zball in Tina Town(威尔逊定理)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Zball in Tina Town Time Limit: 3000/1500 ...

  5. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  6. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  7. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  8. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  9. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

随机推荐

  1. ios学习——键盘的收起

    在开发过程中,我们经常会用到UITextField.UITextView等文本框,然后这些文本框在点击之后会自动成为第一响应者(FirstResponder),并自动弹出软键盘.然而,没有自动定义好的 ...

  2. Thinkphp开启调试模式

    3.0版本的调试模式开启,必须在项目入口文件中添加常量APP_DEBUG定义,如下: define('APP_DEBUG',True); // 开启调试模式 开启调试模式后,你可能感觉不到什么变化,不 ...

  3. Nodejs进阶:crypto模块中你需要掌握的安全基础

    本文摘录自<Nodejs学习笔记>,更多章节及更新,请访问 github主页地址. 一. 文章概述 互联网时代,网络上的数据量每天都在以惊人的速度增长.同时,各类网络安全问题层出不穷.在信 ...

  4. git stash的用法

    使用git stash git stash的使用场景是这样的: 当你正在你的分支下进行开发时,这时候你可能需要切换到你的另一个分支去,你可能要pull新的代码下来,但是你又不想添加无用的commit. ...

  5. 一、源代码-面向CLR的编译器-托管模块-(元数据&IL代码)

    本文脉络图如下: 1.CLR(Common Language Runtime)公共语言运行时简介 (1).公共语言运行时是一种可由多种编程语言一起使用的"运行时". (2).CLR ...

  6. Git详解之一:Git起步

    起步 本章介绍开始使用 Git 前的相关知识.我们会先了解一些版本控制工具的历史背景,然后试着让 Git 在你的系统上跑起来,直到最后配置好,可以正常开始开发工作.读完本章,你就会明白为什么 Git ...

  7. 韩顺平教学资源java、oracle、linux

    http://blog.itpub.net/28688617/viewspace-766392/

  8. Java---hashCode()和equals()

    1.hashCode()和equals() API hashCode()和equals()都来自上帝类Object, 所有的类都会拥有这两个方法,特定时,复写它们. 它们是用来在同一类中做比较用的,尤 ...

  9. 转: 谈JAVA_OPTS环境变量不起作用

    谈JAVA_OPTS环境变量不起作用 2016-6-14 11:12 最近在处理运行一个java应用时,老是出现java.lang.OutOfMemoryError: Java heap space. ...

  10. php isset和empty方法的区别

    我总结了下面几点区别,直接上代码: empty方法: 变量不存在,返回true 变量存在,值为空,返回true 变量存在,值不为空,返回false function empty1(){ //变量不存在 ...