这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变)
我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元。
如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的)。
显然,我宁愿预估多了,也不想预估少了。
所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样。
(yhat沿用吴恩达课堂中的叫法)
 
import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
# 两个输入节点
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
# 回归问题一般只有一个输出节点
y_ = tf.placeholder(tf.float32, shape=(None, 1), name="y-input")
# 定义了一个单层的神经网络前向传播的过程,这里就是简单加权和
w1 = tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1)
# 定义预测多了和预测少了的成本
loss_less = 10
loss_more = 1
#在windows下,下面用这个where替代,因为调用tf.select会报错
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_)*loss_more, (y_-y)*loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
#通过随机数生成一个模拟数据集
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size, 2)
"""
设置回归的正确值为两个输入的和加上一个随机量,之所以要加上一个随机量是
为了加入不可预测的噪音,否则不同损失函数的意义就不大了,因为不同损失函数
都会在能完全预测正确的时候最低。一般来说,噪音为一个均值为0的小量,所以
这里的噪音设置为-0.05, 0.05的随机数。
"""
Y = [[x1 + x2 + rdm.rand()/10.0-0.05] for (x1, x2) in X]
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
steps = 5000
for i in range(steps):
start = (i * batch_size) % dataset_size
end = min(start + batch_size, dataset_size)
sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
print(sess.run(w1))
[[ 1.01934695]
[ 1.04280889]
最终结果如上面所示。
因为我们当初生成训练数据的时候,y是x1 + x2,所以回归结果应该是1,1才对。
但是,由于我们加了自己定义的损失函数,所以,倾向于预估多一点。

如果,我们将loss_less和loss_more对调,我们看一下结果: 

[[ 0.95525807]
[ 0.9813394 ]]

通过这个例子,我们可以看出,对于相同的神经网络,不同的损失函数会对训练出来的模型产生重要的影响。 


引用:以上实例为《Tensorflow实战 Google深度学习框架》中提供。

tensorflow 自定义损失函数示例的更多相关文章

  1. 机器学习之路: tensorflow 自定义 损失函数

    git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf ...

  2. 吴裕雄 python 神经网络——TensorFlow 自定义损失函数

    import tensorflow as tf from numpy.random import RandomState batch_size = 8 x = tf.placeholder(tf.fl ...

  3. Tensorflow 损失函数(loss function)及自定义损失函数(三)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article ...

  4. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  5. tensflow自定义损失函数

    tensflow 不仅支持经典的损失函数,还可以优化任意的自定义损失函数. 预测商品销量时,如果预测值比真实销量大,商家损失的是生产商品的成本:如果预测值比真实值小,损失的则是商品的利润. 比如如果一 ...

  6. tensorflow2 自定义损失函数使用的隐藏坑

    Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. ...

  7. 01_MUI之Boilerplate中:HTML5示例,动态组件,自定义字体示例,自定义字体示例,图标字体示例

     1安装HBuilder5.0.0,安装后的界面截图如下: 2 按照https://www.muicss.com/docs/v1/css-js/boilerplate-html中的说明,创建上图的 ...

  8. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  9. Tensorflow%20实战Google深度学习框架 4.2.2 自定义损失函数源代码

    import os import tab import tensorflow as tf from numpy.random import RandomState print "hello ...

随机推荐

  1. Java开发必装的IntelliJ IDEA插件

    IDEA 插件简介 常见的IDEA插件主要有如下几类: 常用工具支持 Java日常开发需要接触到很多常用的工具,为了便于使用,很多工具也有IDEA插件供开发使用,其中大部分已经在IDEA中默认集成了. ...

  2. Python入门学习(一)

    看完了莫烦Python的视频,对于Python有了一点感觉,接下来打算把小甲鱼的视频啃完,附上学习网址:http://blog.fishc.com/category/python 小甲鱼的视频是从零基 ...

  3. Android 开发笔记___SD卡基本操作__图片读取写入

    package com.example.alimjan.hello_world.Utils; import android.graphics.Bitmap; import android.graphi ...

  4. eclipse构建maven+scala+spark工程

    前提条件 下载安装Scala IDE build of Eclipse SDK 构建工程 1.新建maven工程 2.配置项目信息 3.新建scala对应的Source Folder 4.添加scal ...

  5. mapreduce解析执行sql流程

    样例准备 编号 姓名 性别 班级编号 1 name_1 male 1 2 name_2 female 2 3 name_3 male 3 4 name_4 female 4 5 name_5 male ...

  6. Mybatis框架的搭建和基本使用方法

    1.1MyBatis的下载 最新yBatis可以在github官网上下载: https://github.com/mybatis/mybatis-3 1.2 Mybatis Jar包 1.3MyBat ...

  7. C#中泛型之Dictionary

    1.命名空间:System.Collections.Generic(程序集:mscorlib)2.描述: 1).从一组键(Key)到一组值(Value)的映射,每一个添加项都是由一个值及其相关连的键组 ...

  8. word,excel,ppt转Pdf,Pdf转Swf,通过flexpaper+swftools实现在线预览

    其实这是我好几年前的项目,现在再用这种方式我也不建议了,毕竟未来flash慢慢会淘汰,此方式也是因为目测大部分人都装了flash,才这么做的,但是页面展示效果也不好.其实还是考虑收费的控件,毕竟收费的 ...

  9. Nytro MegaRaid

    Nytro MegaRaid简介 Dell R720xd,内存64G ,12块 SAS Dell R510xd,内存48G ,12块 SAS   SSD+SAS   SSD对于用户透明   raid会 ...

  10. MySQL长短密码

    MySQL长短密码 今天批量搭建MySQL环境的时候,遇到长短密码问题,故就此问题总结一下长短密码. 介绍 1.长密码例子: mysql> show grants for 'test'@'loc ...