最基本的 TensorFlow 提供了一个库来定义和执行对张量的各种数学运算。张量,可理解为一个 n 维矩阵,所有类型的数据,包括标量、矢量和矩阵等都是特殊类型的张量。


 

TensorFlow 支持以下三种类型的张量:

  1. 常量:常量是其值不能改变的张量。
  2. 变量:当一个量在会话中的值需要更新时,使用变量来表示。例如,在神经网络中,权重需要在训练期间更新,可以通过将权重声明为变量来实现。变量在使用前需要被显示初始化。另外需要注意的是,常量存储在计算图的定义中,每次加载图时都会加载相关变量。换句话说,它们是占用内存的。另一方面,变量又是分开存储的。它们可以存储在参数服务器上。
  3. 占位符:用于将值输入 TensorFlow 图中。它们可以和 feed_dict 一起使用来输入数据。在训练神经网络时,它们通常用于提供新的训练样本。在会话中运行计算图时,可以为占位符赋值。这样在构建一个计算图时不需要真正地输入数据。需要注意的是,占位符不包含任何数据,因此不需要初始化它们。

TensorFlow 常量

声明一个标量常量:

t_1 = tf.constant(4)

一个形如 [1,3] 的常量向量可以用如下代码声明:

t_2 = tf.constant([4,3,2])

要创建一个所有元素为零的张量,可以使用 tf.zeros() 函数。这个语句可以创建一个形如 [M,N] 的零元素矩阵,数据类型(dtype)可以是 int32、float32 等:

tf.zeros([M,N],tf.dtype)

例如:

zero_t = tf.zeros([2,3],tf.int32)
# Results in an 2x3 array of zeros:[[0 0 0],[0 0 0]]

还可以创建与现有 Numpy 数组或张量常量具有相同形状的张量常量,如下所示:

创建一个所有元素都设为 1 的张量。下面的语句即创建一个形如 [M,N]、元素均为 1 的矩阵:

tf.ones([M,N],tf,dtype)

例如:

ones_t = tf.ones([2,3],tf.int32)
# Results in an 2x3 array of ones:[[1 1 1],[1 1 1]]

更进一步,还有以下语句:

  • 在一定范围内生成一个从初值到终值等差排布的序列:

    tf.linspace(start,stop,num)

    相应的值为 (stop-start)/(num-1)。例如:

    range_t = tf.linspace(2.0,5.0,5)
    #We get:[2. 2.75 3.5 4.25 5.]

  • 从开始(默认值=0)生成一个数字序列,增量为 delta(默认值=1),直到终值(但不包括终值):

    tf.range(start,limit,delta)

    下面给出实例:

    range_t = tf.range(10)
    #Result:[0 1 2 3 4 5 6 7 8 9]

TensorFlow 允许创建具有不同分布的随机张量:

  1. 使用以下语句创建一个具有一定均值(默认值=0.0)和标准差(默认值=1.0)、形状为 [M,N] 的正态分布随机数组:


     
  2. 创建一个具有一定均值(默认值=0.0)和标准差(默认值=1.0)、形状为 [M,N] 的截尾正态分布随机数组:

     
  3. 要在种子的 [minval(default=0),maxval] 范围内创建形状为 [M,N] 的给定伽马分布随机数组,请执行如下语句:

     
  4. 要将给定的张量随机裁剪为指定的大小,使用以下语句:

    tf.random_crop(t_random,[2,5],seed=12)

    这里,t_random 是一个已经定义好的张量。这将导致随机从张量 t_random 中裁剪出一个大小为 [2,5] 的张量。

    很多时候需要以随机的顺序来呈现训练样本,可以使用 tf.random_shuffle() 来沿着它的第一维随机排列张量。如果 t_random 是想要重新排序的张量,使用下面的代码:

    tf.random_shuffle(t_random)

  5. 随机生成的张量受初始种子值的影响。要在多次运行或会话中获得相同的随机数,应该将种子设置为一个常数值。当使用大量的随机张量时,可以使用 tf.set_random_seed() 来为所有随机产生的张量设置种子。以下命令将所有会话的随机张量的种子设置为 54:

    tf.set_random_seed(54)

    TIP:种子只能有整数值。

TensorFlow 变量

它们通过使用变量类来创建。变量的定义还包括应该初始化的常量/随机值。下面的代码中创建了两个不同的张量变量 t_a 和 t_b。两者将被初始化为形状为 [50,50] 的随机均匀分布,最小值=0,最大值=10:

注意:变量通常在神经网络中表示权重和偏置。

下面的代码中定义了两个变量的权重和偏置。权重变量使用正态分布随机初始化,均值为 0,标准差为 2,权重大小为 100×100。偏置由 100 个元素组成,每个元素初始化为 0。在这里也使用了可选参数名以给计算图中定义的变量命名:

在前面的例子中,都是利用一些常量来初始化变量,也可以指定一个变量来初始化另一个变量。下面的语句将利用前面定义的权重来初始化 weight2:

变量的定义将指定变量如何被初始化,但是必须显式初始化所有的声明变量。在计算图的定义中通过声明初始化操作对象来实现:

每个变量也可以在运行图中单独使用 tf.Variable.initializer 来初始化:

保存变量:使用 Saver 类来保存变量,定义一个 Saver 操作对象:

saver = tf.train.Saver()

TensorFlow 占位符

介绍完常量和变量之后,我们来讲解最重要的元素——占位符,它们用于将数据提供给计算图。可以使用以下方法定义一个占位符:

tf.placeholder(dtype,shape=None,name=None)

dtype 定占位符的数据类型,并且必须在声明占位符时指定。在这里,为 x 定义一个占位符并计算 y=2*x,使用 feed_dict 输入一个随机的 4×5 矩阵:

解读分析

需要注意的是,所有常量、变量和占位符将在代码的计算图部分中定义。如果在定义部分使用 print 语句,只会得到有关张量类型的信息,而不是它的值。

为了得到相关的值,需要创建会话图并对需要提取的张量显式使用运行命令,如下所示:

print(sess.run(t_1))
#Will print the value of t_1 defined in step 1

拓展阅读

很多时候需要大规模的常量张量对象;在这种情况下,为了优化内存,最好将它们声明为一个可训练标志设置为 False 的变量:

t_large = tf.Varible(large_array,trainable = False)

TensorFlow 被设计成与 Numpy 配合运行,因此所有的 TensorFlow 数据类型都是基于 Numpy 的。使用 tf.convert_to_tensor() 可以将给定的值转换为张量类型,并将其与 TensorFlow 函数和运算符一起使用。该函数接受 Numpy 数组、Python 列表和 Python 标量,并允许与张量对象互操作。

下表列出了 TensorFlow 支持的常见的数据类型:


 

请注意,与 Python/Numpy 序列不同,TensorFlow 序列不可迭代。试试下面的代码:

for i in tf.range(10)

你会得到一个错误提示:

#typeError("'Tensor'object id not iterable.")

TensorFlow从0到1之常量、变量和占位符详解(6)的更多相关文章

  1. tensorflow学习笔记(二)常量、变量、占位符、会话

    常量.变量.占位符.会话是tensorflow编程的基础也是最常用到的东西,tensorflow中定义的变量.常量都是tensor(张量)类型. 常量tf.constant() tensorflow中 ...

  2. TensorFlow解析常量、变量和占位符

    TensorFlow解析常量.变量和占位符 最基本的 TensorFlow 提供了一个库来定义和执行对张量的各种数学运算.张量,可理解为一个 n 维矩阵,所有类型的数据,包括标量.矢量和矩阵等都是特殊 ...

  3. 初学C#之变量、占位符、转义符、还有就是类型转换

    ㈠.定义变量 先定义再赋值 int Num1; Num1 = ; 定义的同时赋值 ; 定义多个变量同时赋值,先决条件变量类型相同,例如: string phome = "1891250888 ...

  4. tensorflow中张量_常量_变量_占位符

    1.tensor 在tensorflow中,数据是被封装在tensor对象中的.tensor是张量的意思,即包含从0到任意维度的张量.常数是0维度的张量,向量是1维度的张量,矩阵是二维度的张量,以及还 ...

  5. Java堆、栈和常量池以及相关String详解

    一:在JAVA中,有六个不同的地方可以存储数据: 1. 寄存器(register). 这是最快的存储区,因为它位于不同于其他存储区的地方——处理器内部.但是寄存器的数量极其有限,所以寄存器由编译器根据 ...

  6. 条件变量pthread_cond_wait()和pthread_cond_signal()详解

    条件变量        条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起:另一个线程使"条件成立" ...

  7. 好用的wget命令从下载添加环境变量到各参数详解

    本文是因为(笔者使用的windows系统)使用过好几次wget后,始终存在各种细节问题,于是下定决定细致的研究一下,并记录下其中细节. 下载与安装 第一步:下载wget,网络地址:http://dow ...

  8. 总结:C#变量,占位符等相关知识

    新年耽误了不少时间,好久没认真的坐下来学习了,新年也快完了,又要开始正式学习了,按着视频教学学习,用了一天的时间,学习了下简单的变量及其相关的输入输出和应用,学了几种最基本的类型: int(整型) c ...

  9. shell-的特殊变量-进程状态变量$$ $! $? $_详解

    一:shell的特殊变量-进程状态变量详解  1. 进程状态变量 $$ 获取当前shell的进程号(pid) $! 执行上一个指令的pid,上一个后台运行进程的进程号 $? 获取执行上一个指令的返回值 ...

随机推荐

  1. Spring 自动装配 byName

    自动装配 byName,这种模式由属性名称(方法名)指定自动装配.Spring 容器看作 beans,在 XML 配置文件中 beans 的 auto-wire 属性设置为 byName.然后,它尝试 ...

  2. 【MySQL】MySQL5.7等以上版本在Windows上的配置

    由于本人是win10系统,所以说下win10系统以管理员身份打开cmd 1. 配置环境变量 我这边是安装在了C:\Program Files\MySQL\MySQL Server 5.7在path中加 ...

  3. 新版Element-UI级联选择器高度位置不对的问题

    在做电商后台管理系统项目事遇到的问题,可能视频是去年的,element现在已经是新版本了,有些地方修改了,从而导致了以下问题 级联选择器的位置不对 解决的方法就是在全局css中添加以下代码: .el- ...

  4. php操作redis常用方法

    1,connect 描述:实例连接到一个Redis. 参数:host: string,port: int 返回值:BOOL 成功返回:TRUE;失败返回:FALSE 示例: <?php $red ...

  5. iptables基本用法

    iptables选项参数 [root@test ~]# iptables --help -L #列出指定表所有链上的所有规则,本选项须置于-n选项后面 -n #以数字格式显示地址和端口号 -v #详细 ...

  6. ATX-UI自动化环境搭建

    基础环境准备(以下都是在Mac机上搭建的) 1.android sdk安装&配置 很完美的一个资源下载网:tools.android-studio.org,下载所需的包(我下的zip包直接解压 ...

  7. 读Pyqt4教程,带你入门Pyqt4 _010

    在PyQt4教程的这部分中,我们讨论拖放操作. 拖放(Drag-and-drop)指的是图形用户界面(Graphical user interface)中,在一个虚拟的对象上按着鼠标键将之拖曳到另一个 ...

  8. 通道(Channel)的原理与获取

    通道(Channel):由 java.nio.channels 包定义 的.Channel 表示 IO 源与目标打开的连接. Channel 类似于传统的“流”.只不过 Channel 本身不能直接访 ...

  9. sku算法介绍及实现

    前言 做过电商项目前端售卖的应该都遇见过不同规格产品库存的计算问题,业界名词叫做sku(stock Keeping Unit),库存量单元对应我们售卖的具体规格,比如一部手机具体型号规格,其中ipho ...

  10. 七、Spring MVC高级技术

    知识点 处理文件上传 使用flash属性 在控制器中处理异常 关键词 控制器通知 (Controller Advice) 7.1 处理异常 Spring提供了多种方式将异常转换为响应: 特定的Spri ...