使用朴素贝叶斯解决一些现实生活中
的问题时,需要先从文本内容得到字符串列表,然后生成词向量。

准备数据:切分文本

测试算法:使用朴素贝叶斯进行交叉验证

文件解析及完整的垃圾邮件测试函数

def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2] def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords)
p1Num = ones(numWords) #change to ones()
p0Denom = 2.0
p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive def aloneIndex(datasetLen):
a = []
while(True):
randIndex = int(random.uniform(0,len(trainingSet)))
a.append(randIndex)
if(len(set(a))==10):
break
return a def spamTest():
docList=[]
classList = []
fullText =[]
for i in range(1,26):
wordList = textParse(open('F:\\machinelearninginaction\\Ch04\\email\\spam\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('F:\\machinelearninginaction\\Ch04\\email\\ham\\%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = range(50)
testSet = aloneIndex(trainingSet) #create test set
trainingSetT = []
for i in range(len(trainingSet)):
for j in range(len(testSet)):
if(testSet[j] != trainingSet[i]):
trainingSetT.append(trainingSet[i])
trainingSet = trainingSetT
trainMat=[]
trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if(classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]):
errorCount += 1
print("classification error",docList[docIndex])
print('the error rate is: ',float(errorCount)/len(testSet)) spamTest()

吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件的更多相关文章

  1. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  2. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  3. 吴裕雄--天生自然python机器学习:决策树算法

    我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...

  4. 吴裕雄--天生自然python机器学习:机器学习简介

    除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...

  5. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  6. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  7. 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别

    from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...

  8. 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率

    ,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...

  9. 吴裕雄--天生自然python机器学习:Logistic回归

    假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...

随机推荐

  1. Fiddler 自动响应

    使用目的:提前设置接口返回规则 便于前端联调 不用每次断点修改数据 操作:

  2. 【每日Scrum】第二天冲刺

    一.计划会议内容 确定细化了每日任务 二.任务看板 三.scrum讨论照片 四.产品的状态 无 五.任务燃尽图  

  3. iOS 中的延时操作方法

    1. dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_q ...

  4. 零基础程序员入门Linux系统 !如何快速恢复系统?

    新手在学习Linux系统的时候,难免会遇到命令输错,或系统出错的难题.那么如何快速解决呢?本文就先给你一个后悔药,让你快速备份并恢复Linux系统.本文将以Ubuntu为例,在这之前,你需要一台服务器 ...

  5. uni-app真机调试报错request:fail abort解决方法

    Android端真机调试访问本地接口数据时报错:request:fail abort 报错代码 onLoad: function(e) { uni.request({ url: 'http://loc ...

  6. 第3章 ZooKeeper基本数据模型

    第3章 ZooKeeper基本数据模型 3-1 zk数据模型介绍 3-2 zk客户端连接关闭服务端,查看znode ./zkCli.sh Ctrl + C 退出 =================== ...

  7. PAT Advanced 1127 ZigZagging on a Tree (30) [中序后序建树,层序遍历]

    题目 Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree c ...

  8. java反射使用详细例子

    1. 概念 反射,一种计算机处理方式.是程序可以访问.检测和修改它本身状态或行为的一种能力. 2. 反射机制的作用 通过反机制访问java类的属性,方法,构造方法等: 3.反射机制中的类 (1) ja ...

  9. mysql慢SQL排查之show processlist和show full processlist

    mysql排查线上数据库问题,经常会用到 show processlist和show full processlist这两条命令 processlist命令的输出结果显示了有哪些线程在运行,不仅可以查 ...

  10. Ubuntu源码编译安装tensorflow

    ubuntu14 cuda9.0_384.81 驱动版本384.90  cudnn7.2 tensorflow1.8 https://blog.csdn.net/pkokocl/article/det ...