1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 10707  Solved: 4445
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
 
 
 
线性的DP关系式为 dp[i]=min{dp[i],dp[j]+(sum[i]-sum[j]+i-j-1-L)^2}
显然超时,考虑优化。
假设i选择时有k优于j(k>j 之所以选k大于j的原因是从前往后扫,考虑后面优于前面是否可以舍弃前面的);
1:首先证明满足单调性(换句话说就是对一个当前的i来说,如果k优于j,那么i之后k都优于j)
有dp[k]+(sum[i]-sum[k]+i-k-1-L)^2<dp[j]+(sum[i]-sum[j]+i-j-1-L)^2;(不妨令f[i]=sum[i]+i,C=1+L)
则有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
要证对于任意t>i 均有dp[k]+(f[t]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2  (令f[t]=f[i]+v,嗯经过一系列运算可以知道这个可以证明)
2:利用这个结论
若是利用这个结论条件肯定得先满足吧 所以有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
==》》 (dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i]   (1)
即在从前向后扫描的过程中 只要满足(1)式,就可以去掉队首,若去不掉就将队首作为中介进行运算(这是第一个while所在)
其次,若是将一个元素添加到队列中,必须要将其和原倒数第一个进行比较,若其优于倒数第一个,则将其替换掉(第二个while),这个的意义所在是防止出现 中优,次优,最优这种队列排序,如果没有while的话,计算时只能选取一个中优的而不是最优的(这个是第一个while不能去掉的)具体代码实现请移步http://hzwer.com/2114.html

BZOJ1010单调性DP优化的更多相关文章

  1. 常见的DP优化类型

    常见的DP优化类型 1单调队列直接优化 如果a[i]单调增的话,显然可以用减单调队列直接存f[j]进行优化. 2斜率不等式 即实现转移方程中的i,j分离.b单调减,a单调增(可选). 令: 在队首,如 ...

  2. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  3. [总结]一些 DP 优化方法

    目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...

  4. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  5. DP 优化方法合集

    0. 前言 写完这篇文章后发现自己对于 DP 的优化一窍不通,所以补了补 DP 的一些优化,写篇 blog 总结一下. 1. 单调队列/单调栈优化 1.2 算法介绍 这应该算是最基础的 DP 优化方法 ...

  6. DP 优化小技巧

    收录一些比较冷门的 DP 优化方法. 1. 树上依赖性背包 树上依赖性背包形如在树上选出若干个物品做背包问题,满足这些物品连通.由于 01 背包,多重背包和完全背包均可以在 \(\mathcal{O} ...

  7. dp优化 | 各种dp优化方式例题精选

    前言 本文选题都较为基础,仅用于展示优化方式,如果是要找题单而不是看基础概念,请忽略本文. 本文包含一些常见的dp优化("√"表示下文会进行展示,没"√"表示暂 ...

  8. NOIP2015 子串 (DP+优化)

    子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...

  9. LCIS tyvj1071 DP优化

    思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...

随机推荐

  1. 【思科】OSI和TCP/IP分层

    OSI参考模型 20世纪70年代,ISO创建OSI参考模型,希望不同供应商的网络能够相互协同工作 OSI:开放系统互联 open system interconnection ISO:国际标准化组织  ...

  2. Django中search fields报错:related Field has invalid lookup: icontains

    models.py 文件 # coding:utf8from django.db import models class Book(models.Model):        name = model ...

  3. 解决Vue-cli3.0下scss文件编译过慢、卡顿问题

    在使用Vue-cli 3.0构建的项目中,可能存在项目编译过慢的问题,具体表现在编译时会在某一进度比如40%时停顿,等好一会儿才能够编译完成.这使得浏览器中的实时预览也会卡顿,不利于我们快速查看效果, ...

  4. Vue tools开发工具报错Cannot read property '__VUE_DEVTOOLS_UID__' of undefined

    使用 vue tools 开发工具,不显示调试面板中的组件,点击控制台报错: Cannot read property 'VUE_DEVTOOLS_UID' of undefined 在 main.j ...

  5. Java算法之 二分搜寻法 ( 搜寻原则的代表)

    为什么80%的码农都做不了架构师?>>>   二分搜寻法 ( 搜寻原则的代表) 1.二分查找又称折半查找,它是一种效率较高的查找方法. 2.二分查找要求:(1)必须采用顺序存储结构 ...

  6. 从零开始搭建口袋妖怪管理系统(4)-借助webpack4.6工程化项目(上)

    "手动是不可能手动的了,这辈子都不可能手动的了." 一.目标 上一章我们借助ngRoute,完成了口袋妖怪SPA系统的多模块导航开发,但是现在引用的东西越来越多,项目文件目录开始变 ...

  7. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  8. 在TX2上多线程读取视频帧进行caffe推理

    参考文章:Multi-threaded Camera Caffe Inferencing TX2之多线程读取视频及深度学习推理 背景 一般在TX2上部署深度学习模型时,都是读取摄像头视频或者传入视频文 ...

  9. B站弹幕系统架构——GOIM解读

    架构图 说明: 1.logic启动http服务器, 接受http请求,用于将数据推送到kafka以及获取在线用户信息,websocket身份校验 2.comet组件起动webdocket/tcp服务, ...

  10. django源码分析——静态文件staticfiles中间件

    本文环境python3.5.2,django1.10.x系列 1.在上一篇文章中已经分析过handler的处理过程,其中load_middleware就是将配置的中间件进行初始化,然后调用相应的设置方 ...