1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 10707  Solved: 4445
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
 
 
 
线性的DP关系式为 dp[i]=min{dp[i],dp[j]+(sum[i]-sum[j]+i-j-1-L)^2}
显然超时,考虑优化。
假设i选择时有k优于j(k>j 之所以选k大于j的原因是从前往后扫,考虑后面优于前面是否可以舍弃前面的);
1:首先证明满足单调性(换句话说就是对一个当前的i来说,如果k优于j,那么i之后k都优于j)
有dp[k]+(sum[i]-sum[k]+i-k-1-L)^2<dp[j]+(sum[i]-sum[j]+i-j-1-L)^2;(不妨令f[i]=sum[i]+i,C=1+L)
则有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
要证对于任意t>i 均有dp[k]+(f[t]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2  (令f[t]=f[i]+v,嗯经过一系列运算可以知道这个可以证明)
2:利用这个结论
若是利用这个结论条件肯定得先满足吧 所以有dp[k]+(f[i]-f[k]-C)^2<dp[j]+(f[i]-f[j]-C)^2
==》》 (dp[k]+(f[k]+c)^2-dp[j]-(f[j]+c)^2)/2*(f[k]-f[j])<=f[i]   (1)
即在从前向后扫描的过程中 只要满足(1)式,就可以去掉队首,若去不掉就将队首作为中介进行运算(这是第一个while所在)
其次,若是将一个元素添加到队列中,必须要将其和原倒数第一个进行比较,若其优于倒数第一个,则将其替换掉(第二个while),这个的意义所在是防止出现 中优,次优,最优这种队列排序,如果没有while的话,计算时只能选取一个中优的而不是最优的(这个是第一个while不能去掉的)具体代码实现请移步http://hzwer.com/2114.html

BZOJ1010单调性DP优化的更多相关文章

  1. 常见的DP优化类型

    常见的DP优化类型 1单调队列直接优化 如果a[i]单调增的话,显然可以用减单调队列直接存f[j]进行优化. 2斜率不等式 即实现转移方程中的i,j分离.b单调减,a单调增(可选). 令: 在队首,如 ...

  2. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  3. [总结]一些 DP 优化方法

    目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...

  4. DP 优化方法大杂烩 & 做题记录 I.

    标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...

  5. DP 优化方法合集

    0. 前言 写完这篇文章后发现自己对于 DP 的优化一窍不通,所以补了补 DP 的一些优化,写篇 blog 总结一下. 1. 单调队列/单调栈优化 1.2 算法介绍 这应该算是最基础的 DP 优化方法 ...

  6. DP 优化小技巧

    收录一些比较冷门的 DP 优化方法. 1. 树上依赖性背包 树上依赖性背包形如在树上选出若干个物品做背包问题,满足这些物品连通.由于 01 背包,多重背包和完全背包均可以在 \(\mathcal{O} ...

  7. dp优化 | 各种dp优化方式例题精选

    前言 本文选题都较为基础,仅用于展示优化方式,如果是要找题单而不是看基础概念,请忽略本文. 本文包含一些常见的dp优化("√"表示下文会进行展示,没"√"表示暂 ...

  8. NOIP2015 子串 (DP+优化)

    子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...

  9. LCIS tyvj1071 DP优化

    思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...

随机推荐

  1. Django 内置分页的简单使用

    1, 文档 https://docs.djangoproject.com/en/1.11.1/topics/pagination/ 2,视图 from django.core.paginator im ...

  2. jmeter的教学视频

    转载于:https://www.cnblogs.com/ios9/p/9769058.html

  3. Recursion and System Stack

    递归是计算机科学中一个非常重要的概念,对于斐波那契那种比较简单的递归,分析起来比较容易,但是由于二叉树涉及指针操作,所以模仿下遍历过程中系统栈的情况. 以二叉树中序遍历为例演示: //二叉树定义 st ...

  4. Codeforce 1311A Add Odd or Subtract Even

    Add Odd or Subtract Even time limit per test2 seconds memory limit per test256 megabytes inputstanda ...

  5. python(re 模块)

    1.re.match() 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none. group() 以str形式返回对象中match的元素 start() 返回 ...

  6. ubuntu16.04安装FastDFS-5.08

    fastdfs github地址: https://github.com/happyfish100/ 1.FastDFS上传原理 - storage定时向tracker上传状态信息 - client上 ...

  7. Java——字节和字符的区别

    字节 1.bit=1  二进制数据0或1 2.byte=8bit  1个字节等于8位 存储空间的基本计量单位 3.一个英文字母=1byte=8bit 1个英文字母是1个字节,也就是8位 4.一个汉字= ...

  8. NLP(二十九)一步一步,理解Self-Attention

      本文大部分内容翻译自Illustrated Self-Attention, Step-by-step guide to self-attention with illustrations and ...

  9. python学习之如何一次性输出多个变量的值

    如果要输出多个结果 ,中间使用逗号隔开,且引用变量为%(变量1,变量2,变量3)例如

  10. Coursera课程笔记----P4E.Capstone----Week 4&5

    Spidering and Modeling Email Data(week4&5) Mailing List - Gmane Crawl the archive of a mailing l ...