Description

You all know the Dirichlet principle, the point of which is that if n boxes have no less than n + 1 items, that leads to the existence of a box in which there are at least two items.

Having heard of that principle, but having not mastered the technique of logical thinking, 8 year olds Stas and Masha invented a game. There are a different boxes and b different items, and each turn a player can either add a new box or a new item. The player, after whose turn the number of ways of putting b items into a boxes becomes no less then a certain given number n, loses. All the boxes and items are considered to be different. Boxes may remain empty.

Who loses if both players play optimally and Stas's turn is first?

Input

The only input line has three integers a, b, n (1 ≤ a ≤ 10000, 1 ≤ b ≤ 30, 2 ≤ n ≤ 109) — the initial number of the boxes, the number of the items and the number which constrains the number of ways, respectively. Guaranteed that the initial number of ways is strictly less than n.

Output

Output "Stas" if Masha wins. Output "Masha" if Stas wins. In case of a draw, output "Missing".

Sample Input

Input
2 2 10
Output
Masha
Input
5 5 16808
Output
Masha
Input
3 1 4
Output
Stas
Input
1 4 10
Output
Missing

Hint

In the second example the initial number of ways is equal to 3125.

  • If Stas increases the number of boxes, he will lose, as Masha may increase the number of boxes once more during her turn. After that any Stas's move will lead to defeat.
  • But if Stas increases the number of items, then any Masha's move will be losing.

Source

【分析】
还不错的题目,跟普通的题目有区别的是有平局的情况。
需要特判一下。
如a = 1的时候,如果两个人都在b上面操作,就不会有结果。
所以模拟一下b的增加然后判断增加1的时候的胜败态就行了。
还有b = 1时同理。
还有就是a b 同时为1的时候
 /*
酒逢知己千杯少,话不投机半句多。
遥知湖上一樽酒,能忆天涯万里人。
*/ #include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define LOCAL
const int MAXL = ;
const long long MOD = ;
const int MAXK = + ;
const int MAXN = + ;
const int MAXM = ;
using namespace std;
typedef long long LL;
int a , b , n , sg[MAXN][MAXM]; LL pow(int a, int b){
if (b == ) return 1ll;
if (b == ) return (LL)a;
LL tmp = pow(a, b / );
if (b % == ) return tmp * tmp;
else return (LL)tmp * tmp * (LL)a;
}
int dfs (int a , int b) {
if (sg[a][b] >= ) return sg[a][b];
if (pow(a, b) >= (LL)n) {
return sg[a][b] = ;
}
int Ans = ;
Ans |= !dfs(a + , b);//只要有一个是1就能够获胜
Ans |= !dfs(a , b + );
return sg[a][b] = Ans;
}
int work_2(int a){
int b = , turn = ;
int up = (int)sqrt((double)n - 0.0000001);//处理上界
while (a <= up){
if (sg[a][b + ] == ) return (turn == );
a++;
turn = turn ^ ;
}
//剩下的就是判断奇偶性,看谁先到
turn = (turn + (n - - a)) % ;
return turn;
}
int work_1(int b){
int a = ;
if (pow(a, b) >= n) return ;
else {
int turn = ;
for (; !(pow(, b) >= n); b++){
if (sg[a + ][b] == ){
if (turn == ) return ;
else return -;
}
turn ^= ;
}
return ;
}
} int main () { memset(sg , - , sizeof (sg));
scanf("%d%d%d", &a, &b, &n);
if (pow(a, b) >= n) {
puts ("Masha");
return ;
}
dfs(, );
if (a != && b != ){
if (sg[a][b] != ) printf("Masha");
else printf("Stas");
return ;
} if (a == && b == ){
int c = work_1(b + );
int d = work_2(a + );
if (c < || d == ) printf("Masha");
else if (c == ) printf("Missing");
else printf("Stas");
}else if (b == ){
if (work_2(a) != ) printf("Masha");
else printf("Stas");
}else if (a == ){
int tmp = work_1(b);
if (tmp == ) printf("Missing");
else if (tmp == ) printf("Masha");
else printf("Stas");
}
return ;
}

【CF39E】【博弈论】What Has Dirichlet Got to Do with That?的更多相关文章

  1. CF 39E. What Has Dirichlet Got to Do with That?(记忆化搜索+博弈论)

    传送门 解题思路 首先很好写出一个\(O(ab)\)的记搜,但发现这样无法处理\(a=1\)和\(b=1\)的情况,这两种情况需要特判.首先\(a=1\)的情况,就是如果当前选手让\(a+1\)必胜, ...

  2. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  3. LDA( Latent Dirichlet Allocation)主题模型 学习报告

    1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...

  4. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  5. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  6. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  7. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  8. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. 沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌)

    沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌)是由俄国数学家格奥尔吉·沃罗诺伊建立的空间分割算法.灵感来源于笛卡尔用凸域分割空间的思想. ...

随机推荐

  1. 在代码中创建Drawable资源

    如何在代码中创建圆环: 先看效果图 代码; import android.graphics.drawable.GradientDrawable; GradientDrawable circle = n ...

  2. Linux驱动的两种加载方式过程分析

    一.概念简述 在Linux下可以通过两种方式加载驱动程序:静态加载和动态加载. 静态加载就是把驱动程序直接编译进内核,系统启动后可以直接调用.静态加载的缺点是调试起来比较麻烦,每次修改一个地方都要重新 ...

  3. 高德地图搜索提示获取信息回传activity刷新ui(二)

    应用场景: 在主activity中点击进入到另一个activity搜索提示,获取经纬度,点确定返回到主activity,虽然说需求很奇葩,但是遇到了没办法.. 主要包含两部分,搜索提示+activit ...

  4. ACM2096_小明A+B

    #include<iostream> int main() { using namespace std; int a,b,count; cin>>count; while(co ...

  5. js冲突怎么解决

    a.最容易出现的就是js的命名冲突①.变量名冲突变量有全局变量和局部变量当全局变量变量和局部变量名称一致时,就会js冲突,由于变量传递数值或地址不同就会产生JavaScript错误,甚至死循环.②.方 ...

  6. DevExpress控件 GridControl 单元格编辑 回车

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  7. 【Android - 框架】之ButterKnife的使用

    ButterKnife可以省去控件findViewById的步骤,提高开发效率. 用法: 1.添加依赖: compile 'com.jakewharton:butterknife:5.1.1' 2.在 ...

  8. IAAS云计算产品畅想-云主机产品内涵

    这里所涉及的主要还是狭义的云主机产品. 主要还是谈云主机产品中公有云产品与私有云产品相比赋予更多的含义: 产品广义理解:公有云主机的最大特点就是基础资源按需支付 从这一句话中可以体现出来两个含义: 产 ...

  9. Hadoop最基本的wordcount(统计词频)

    package com.uniclick.dapa.dstest; import java.io.IOException; import java.net.URI; import org.apache ...

  10. C#截取指定字符串函数

    本文转载:http://www.cnblogs.com/liufei88866/archive/2012/05/12/2497395.html 一.通过函数方式进行获取. public string ...