【BZOJ 3476】 线段树===
59 懒惰的奶牛
贝西所在的牧场,散落着 N 堆牧草,其中第 i 堆牧草在 ( Xi,Yi ) 的位置,数量有 Ai 个单位。
贝西从家移动到某一堆牧草的时候,只能沿坐标轴朝正北、正东、正西、正南这四个方向移
动,所以计算贝西和牧草间的距离时,应采用“曼哈顿距离”—— (x,y ) 和 (x ′,y ′) 之间的距离为
|x − x ′ | + |y − y ′ |。例如贝西的家在 (0.5, 0.3),有一堆牧草在 (3, 2),那么它们之间的距离就是 4.2。
贝西懒得走动,她想请你为它寻找一个最好的位置作为家,这个家附近距离不超过 K 的牧草数
量之和是最大的。注意家的坐标可以不是整数,也可以和某堆牧草的坐标完全重合。
输入格式
• 第一行:两个整数 N 和 K, 1 ≤ N ≤ 100000, 1 ≤ K ≤ 2000000
• 第二行到第 N + 1 行:第 i + 1 行有三个整数: Ai, Xi 和 Yi, 1 ≤ Ai ≤ 10000, 0 ≤ Xi,Yi ≤
1000000
输出格式
• 单个整数:表示距离和最佳位置不超过 K 的牧草数量之和
样例输入
4 3
7 8 6
3 0 0
4 6 0
1 4 2
样例输出
8
解释
选择 (3, 0) 为家,位置在 (0, 0), (6, 0) 和
(4, 2) 的牧草距离家都不超过 K
来源
The Lazy Cow, 2014 Mar
【分析】
曼哈顿距离的话,那个范围,应该是一个边长和坐标轴呈45度角的正方形。
这样就有点难搞,难统计。
我们需要把图形“旋转一下”
旋转的目标是让正方形的边长平行于坐标轴。、
那么,观察一下可以得到,可以把nx=x-y ny=x+y 这样就旋转过来了(其实改变了正方形的大小的,但没有关系,只要能判断出曼哈顿距离是不是<=k就好)
然后就很简单了,用线段树维护y纵坐标,然后x横坐标线性扫描。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 2000010 struct hp
{
int a,ax,ay;
}tt[Maxn]; struct node
{
int l,r,lc,rc,ans;
int lazy;
}t[*Maxn];int len; int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} bool cmp(hp x,hp y) {return x.ax<y.ax;}
int n,k; int build(int l,int r)
{
int x=++len;
t[x].l=l;t[x].r=r;
t[x].ans=;t[x].lazy=;
if(l!=r)
{
int mid=(l+r)>>;
t[x].lc=build(l,mid);
t[x].rc=build(mid+,r);
}
else t[x].lc=t[x].rc=;
return x;
} void init()
{
scanf("%d%d",&n,&k);
int mx=;
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&tt[i].a,&tt[i].ax,&tt[i].ay);
int xx=tt[i].ax;
tt[i].ax=tt[i].ax-tt[i].ay;tt[i].ay=xx+tt[i].ay+;
mx=mymax(mx,tt[i].ay);
}
sort(tt+,tt++n,cmp);
k=k*;
build(,mx);
} void upd(int x)
{
if(t[x].lazy==) return;
t[x].ans+=t[x].lazy;
int lc=t[x].lc,rc=t[x].rc;
if(t[x].l!=t[x].r)
{
t[lc].lazy+=t[x].lazy;
t[rc].lazy+=t[x].lazy;
}
t[x].lazy=;
} void change(int x,int l,int r,int y)
{
if(t[x].l==l&&t[x].r==r)
{
t[x].lazy+=y;
return;
}
upd(x);
int mid=(t[x].l+t[x].r)>>;
if(r<=mid) change(t[x].lc,l,r,y);
else if(l>mid) change(t[x].rc,l,r,y);
else
{
change(t[x].lc,l,mid,y);
change(t[x].rc,mid+,r,y);
}
upd(t[x].lc);upd(t[x].rc);
t[x].ans=mymax(t[t[x].lc].ans,t[t[x].rc].ans);
} void ffind()
{
int j=,ans=;
for(int i=;i<=n;i++)
{
while(j<n&&tt[j+].ax-tt[i].ax<=k)
{
int nx=mymax(,tt[j+].ay-k);
change(,nx,tt[j+].ay,tt[j+].a);
j++;
}
upd();
ans=mymax(ans,t[].ans);
change(,mymax(,tt[i].ay-k),tt[i].ay,-tt[i].a);
}
printf("%d\n",ans);
} int main()
{
init();
ffind();
return ;
}
bzoj 3476
2016-10-31 11:25:57
【BZOJ 3476】 线段树===的更多相关文章
- BZOJ 1798 (线段树||分块)的标记合并
我原来准备做方差的.. 结果发现不会维护两个标记.. 就是操作变成一个 a*x+b ,每次维护a , b 即可 加的时候a=1 ,b=v 乘的时候a=v ,b=0 #include <cstdi ...
- bzoj 3999 线段树区间提取 有序链剖
看错题目了,想成每个城市都可以买一个东西,然后在后面的某个城市卖掉,问最大收益.这个可以类似维护上升序列的方法在O(nlog^3n)的时间复杂度内搞定 这道题用到的一些方法: 1. 可以将有关的线段提 ...
- bzoj 3211 线段树
开方操作最多进行5次就可以把出现的任何数变成1. 所以用线段树暴力修改,以后修改时只需看一下是否当前区间都是0或1,如果是那么就直接返回. /***************************** ...
- bzoj 1018 线段树维护连通性
本题将一道LCT的题特殊化(支持加边和删边,询问图的连通性),将图变成了2×m的网格图,然后就神奇地可以用线段树来维护. 对于每个区间[l,r],维护其四个角落之间的连通性(仅仅通过[l,r]这段的边 ...
- bzoj 3212 线段树
裸的线段树 /************************************************************** Problem: User: BLADEVIL Langua ...
- bzoj 2120 线段树套平衡树
先吐下槽,改了快一个小时,最后发现是SBT的delete写错了,顿时就有想死的心..... 首先对于这道题,我们应该先做一下他的小问题,bzoj1878,虽然和这道题几乎一点关系没有, 但是能给我们一 ...
- bzoj 1901 线段树套平衡树+二分答案查询
我们就建一颗线段树,线段树的每一个节点都是一颗平衡树,对于每个询问来说,我们就二分答案, 查询每个二分到的mid在这个区间里的rank,然后就行了 /************************* ...
- BZOJ 1012 线段树||单调队列
非常裸的线段树 || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...
- BZOJ 3681 线段树合并+网络流
思路: 暴力建图有n*m条边 考虑怎么优化 (那就只能加个线段树了呗) 然后我就不会写了..... 抄了一波题解 //By SiriusRen #include <bits/stdc++.h&g ...
- BZOJ 4756 线段树合并(线段树)
思路: 1.最裸的线段树合并 2. 我们可以观察到子树求一个东西 那我们直接DFS序好了 入队的时候统计一下有多少比他大的 出的时候统计一下 减一下 搞定~ 线段树合并代码: //By SiriusR ...
随机推荐
- JQuery设置缓慢下拉大行多次执行的解决办法,以及stop()函数的简单理解
$(function(){ $('.all>li').mouseover(function(e) { $(this).children().stop().slideDown(300 ...
- 浅谈C#随机数发生器
我们在做能自动生成试卷的考试系统时,常常需要随机生成一组不重复的题目,在.net Framework中提供了一个专门用来产生随机数的类System.Random. 对于随机数,大家都知道,计算机不 可 ...
- WebView组件的应用
1.什么是WebView? WebView(网络视图)能加载显示网页,可以将其视为一个浏览器,它使用了WebKit渲染引擎加载显示网页. <?xml version="1.0" ...
- c++ 学习之const专题之const成员函数
一些成员函数改变对象,一些成员函数不改变对象. 例如: int Point::GetY() { return yVal; } 这个函数被调用时,不改变Point对象,而下面的函数改变Point对象: ...
- ios 消息跳转处理
一.消息转发流程 当向Objective-C对象发送一个消息,但runtime在当前类及父类中找不到此selector对应的方法时,消息转发(message forwarding)流程开始启动. 动态 ...
- ASP.NET MVC5总结(三)登陆中常用技术解析之session与cookie
1.session机制 session机制是在服务器端保持状态的方案,在做系统登陆时,我们往往会用到session来存储一些用户登录的重要信息,而这些信息是不能存在cookie中的. 当访问量增多时, ...
- select random item with weight 根据权重随机选出
http://eli.thegreenplace.net/2010/01/22/weighted-random-generation-in-python/ 类似俄罗斯轮盘赌
- xcode 最近打开文件列表显示为空或不显示最近打开的项目或(no recent projects)解决办法
如果使用的是10.10 系统,打开系统设置-->进入通用-->在最下面的"最近使用的项目"中将0改为你可以接受的选项 如果不是10.10,那么就从系统偏好设置---&g ...
- redis基本数据类型【2】-Hash类型
一.概述 1.散列是一种典型的字典结构,filed和value的映射,但value只能存储字符串,不支持其他类型 2.一个散列类型最多包含 2^32 -1个字段 3.散列适合存储对象:使用对象和ID构 ...
- 静态库的pdb
静态库也会有pdb,只不过,默认是以vc编译器作为名字,比如vs2003的lib的pdb是vc70.pdb,vs2008则是vc90.pdb