[POJ2348]Euclid's Game
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 8313 | Accepted: 3374 |
Description
25 7
11 7
4 7
4 3
1 3
1 0
an Stan wins.
Input
Output
Sample Input
34 12
15 24
0 0
Sample Output
Stan wins
Ollie wins
Source
SolutionⅠ
黄金比例
如果两个数相等,或者两数之比大于斐 波拉契数列相邻两项之比的极限((sqrt(5)+1)/2),则先手胜,否则后手胜。
var a,b:longint;f:boolean; procedure swap();
begin
b:=a xor b;
a:=a xor b;
b:=a xor b;
end; begin
while true do
begin
readln(a,b);
if (a=)and(b=) then halt;
if a>b then swap();
if (a=b)or(b/a>=(sqrt()+)/) then writeln('Stan wins')
else writeln('Ollie wins');
end;
end.
SolutionⅡ
给定两堆石子,二人轮流取子,要求只能从石子数目较大的那一堆取子,取子的数目只能是另一堆石子数目的倍数.最终使得某一堆数目为零的一方为胜.
首先,容易看出,对于每一个局面,要么是先手必胜,要么是后手必胜,最终结果完全由当前局面完全确定.
另外,可以简单罗列一下先手必胜和必败的几种局面(两堆石子初始数目都大于零):
1,有一堆石子数目为一,先手必胜, 1,4, 1,2.
2,两堆石子数目差一,且两堆石子数目都不为一,先手必败(只能使后手面对必胜的局面),如 3,4 5,6 .
3,如果数目较大的那一堆是数目较小那一堆的2倍加减一,且不是上面两种局面,先手必胜,2,5 3,5 3,7.
可是上面这些信息对于解决这个问题还是有一些困难.
再进一步试算数目较小的石子,可以发现,当两堆数目相差较大时,总是先手必胜.
事实上,进一步探讨可以发现下面的结论:
1,N<2*M-1时,先手别无选择,只能使之变为 N-M,M 局面,(易见)如3,5 5,7 7,4...
2,设两堆石子数目为N,M(N>M>0,且N,M互质),则若N>=2*M-1,且N - M ! =1时,先手必胜.要求M,N互质是因为对于M,N有公因数的情形,可以同时除以其公因数而不影响结果.
简单说明一下上面结论2的由来. N>=2*M-1时,先手可使之变为 N%M,M 或N%M+M,M两种局面之一,其中有且只有一个必败局面。注意到如果N%M,M不是必败局面,那么N%M+M,M就是必败局面,因为面对N%M+M,M这个局面,你别无选择,只能在前一堆中取M个使对方面对必胜局面(结论1 )。
解释来源:http://www.cppblog.com/sdz/archive/2010/08/29/125124.html
var a,b:int64;f:boolean; procedure swap();
begin
b:=a xor b;
a:=a xor b;
b:=a xor b;
end; procedure main;
begin
while = do
begin
if a>b then swap();
if (b mod a=)then break;
if (b-a>a) then break;
dec(b,a);
if f=false then f:=true;
if f=true then f:=false;
end;
if f then writeln('Stan wins')
else writeln('Ollie wins');
end; begin
while true do
begin
readln(a,b);
f:=true;
if (a=)and(b=) then halt;
main;
end;
end.
[POJ2348]Euclid's Game的更多相关文章
- [poj2348]Euclid's Game(博弈论+gcd)
Euclid's Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9033 Accepted: 3695 Des ...
- 【博弈论】poj2348 Euclid's Game
假设当前b>a. 一.b%a==0 必胜 二.b<2*a,当前我们没有选择的余地,若下一步是必胜(最终能到情况一),则当前必败:反之,当前必胜. 三.b>2*a,假设x是使得b-ax ...
- poj分类解题报告索引
图论 图论解题报告索引 DFS poj1321 - 棋盘问题 poj1416 - Shredding Company poj2676 - Sudoku poj2488 - A Knight's Jou ...
- 博弈论BOSS
基础博弈的小结:http://blog.csdn.net/acm_cxlove/article/details/7854530 经典翻硬币游戏小结:http://blog.csdn.net/acm_c ...
- 【Mark】博弈类题目小结(HDU,POJ,ZOJ)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 首先当然要献上一些非常好的学习资料: 基础博弈的小 ...
- POJ 2348 Euclid's Game(博弈)题解
题意:有a,b两个数字,两人轮流操作,每次可以选择两个之中较小的数字,然后另一个数字减去选择数字的任意倍数(不能减到负数),直到其中一个为0,不能操作为败 思路:这题用博弈NP思想,必败点和必胜点之间 ...
- ZOJ1913 Euclid's Game (第一道简单的博弈题)
题目描述: Euclid's Game Time Limit: 2 Seconds Memory Limit: 65536 KB Two players, Stan and Ollie, p ...
- Euclid求最大公约数
Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y= ...
- HDU 1525 Euclid's Game 博弈
Euclid's Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
随机推荐
- ASP.NET Core 行军记 -----第一步(艰辛的 MVC Hello World)
现在ASP.NET Core还在不断成长.更新中,说不定到了明天又换了个模样,就如同一个小孩,从蹒跚学步,到奔向未来. 所以我们可以相应的去理解更新中所发生的变化,包容它.呵护它,而不是盲目的指责与批 ...
- Mac OSX 安装Python的paramiko模块经验总结
一.简单介绍 最近需要用Python模拟登录远程服务器并自动执行一些代码,需要安装一个叫paramiko的模块. paramiko官方介绍遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接 ...
- Python SqlAlchemy使用方法
1.初始化连接 from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create ...
- windows下常用快捷键
windows下常用快捷键: 显示桌面: win徽标+D 打开资源管理器: win徽标+E 打开任务管理器: Ctrl+Alt+delete 任务切换: Alt+Tab 应用程序中窗口之间的切换: C ...
- 【面试题】百度糯米java工程师面试
面试经历: 技术题问的比较基础的java知识,有个编程题设计团购秒杀方面的设计,之前没有这种经验做的不好,做完题一个技术经理过来面试,主要问了一下之前做的什么项目,对struts,spring的原理做 ...
- C#中如何按字节数截取字符串?
http://www.cnblogs.com/xuejie/archive/2012/12/14/2818452.html
- C# - 自动属性
使用自动属性时,只能通过属性访问数据,不能通过底层私有字段,因为我们不知道底层私有字段的名称,是编译期间定义的.所以也没法对字段赋值或取值进行校验或限制. 无法使用这种方式定义只读或只写属性.
- javascript pattern
bing:javascript pattern baidu:module pattern javascript高级程序设计 姊妹篇:ajax高级程序设计 http://wenku.baidu.com/ ...
- Jmeter使用——参数化
最近一个想项目使用jmeter进行测试,陆续将遇到并解决的问题记录下来,本次主要记录参数化得一些问题. 1. 单台压力机 多个线程组不重复数字,注意分布式负载时多个压力机会出现重复的问题 主要思路分别 ...
- Ubuntu zookeeper-3.5.0-alpha启动错误 zkEnv.sh: Syntax error: "(" unexpected (expecting "fi")(转)
昨天小猿我把Ubuntu Server64位上的 zookeeper换成了最新版本的,结果启动的时候出错:之前zookeeper-3.3.6是没有任何问题的,换成了zookeeper3.5出现了下面的 ...