分类看起来比聚类和推荐麻烦多了

分类算法与聚类和推荐算法的不同:必须是有明确结果的,必须是有监督的,主要用于预测和检测

Mahout的优势 mahout的分类算法对资源的要求不会快于训练数据和测试数据的增长速度,而且可以转换为分布式应用(数据规模如果不够大 Mahout表现可能不及其他类型的系统)

关键词表:

Key idea

Description

Model

A computer program that makes decisions; in classification, the output of the training algorithm is a model

Training Data

Subset of training examples labeled with the value of the target variable and used as input to the learning algorithm to produce the model

Test Data

Withheld portion of training examples given to the model without the value for the target variable (although the value is known) and used to evaluate the model

Training

Learning process that uses training data to produce a model. That model can then compute estimates of the target variable given the predictor variables as inputs.

Training example

Entity with features that will be used as input for learning algorithm

Feature

A known characteristic of a training or new example; a “feature” is equivalent to saying a “characteristic”.

Variable

In this context, a variable is equivalent to a the value of a feature or a function of several features. This usage is somewhat different from a normal variable in a computer program.

Record

A container where an example is stored; such a record is composed of fields.

Field

Part of a record that contains the value of a feature (variable)

Predictor variable

Feature selected for use as input for a classification model. Not all features need be used. Some features may be algorithmic combinations of other features.

Target variable

Feature that the classification model is attempting to estimate: the target variable is categorical and its determination is the aim of the classification system.

一般来说:80-90%的数据作为training Data 其他数据作为Test Data数据

Mahout分类中的四种数据类型

Type of Value

Description

Continuous

This type of value is a floating point value. This might be a price, a weight, a time, a value or anything else that has a numerical magnitude and where this magnitude is the key property of the value.

Categorical

A categorical value can have one of a pre-specified set of values. Typically the set of categorical values is relatively small and may be as small as two, although the set can be quite large. Boolean values are generally treated as categorical values. Another example might be a vendor id.

Word-like

A word-like value is like a categorical value, but it has an open-ended set of possible values.

Text-like

A text-like value is a sequence of word-like values, all of the same kind. Text is the classic example of a text-like value, but a list of email addresses or URL’s is also text-like.

数据类型

Name

Type

Value

from-address

word-like

George <george@fumble-tech.com>

in-address-book?

categorical(TRUE, FALSE)

TRUE

non-spam-words

text-like

“Ted”, “Mahout”, “User”, “lunch”

spam-words

text-like

“available”

unknown-words

continuous

0

message-length

continuous

31

分类的应用步骤

Stage

Step

1. Training the model

Define target variable

Collect historical data

Define predictor variables

Select a learning algorithm

Use learning algorithm to train model

2. Evaluating the model

Run test data

Adjust input (different predictor variables and/or algorithm)

3. Using model in production

Input the new examples to estimate unknown target values

Retrain model as needed

Mahout的命令行工具

$ $MAHOUT_HOME/bin/mahout

An example program must be given as the first argument.

Valid program names are:

canopy: : Canopy clustering

cat : Print a file or resource as the logistic regression models would see it

...

runlogistic : Run a logistic regression model against CSV data

...

trainlogistic : Train a logistic regression using stochastic gradient descent

demo:

cat 查看一个文件

$ bin/mahout cat donut.csv

"x","y","shape","color","k","k0","xx","xy","yy","a","b","c","bias"

0.923307513352484,0.0135197141207755,21,2,4,8,0.852496764213146,...,1

0.711011884035543,0.909141522599384,22,2,3,9,0.505537899239772,...,1

...

0.67132937326096,0.571220482233912,23,1,5,2,0.450683127402953,...,1

0.548616112209857,0.405350996181369,24,1,5,3,0.300979638576258,...,1

0.677980388281867,0.993355110753328,25,2,3,9,0.459657406894831,...,1

$

Trainlogistic:根据数据训练生成model

$ $MAHOUT_HOME/bin/mahout trainlogistic --input donut.csv \

--output ./model \

--target color --categories 2 \

--predictors x y --types numeric \

--features 20 --passes 100 --rate 50

...

color ~ -0.157*Intercept Term + -0.678*x + -0.416*y

Intercept Term -0.15655

x -0.67841

y -0.41587

...

Option

Whatit Does

--quiet

Produce less status and progress output

--input <file-or-resource>

Use the specified file or resource as input

--output <file-for-model>

Put the model into the specified file

--target <variable>

Use the specified variable as the target

--categories <n>

How many categories does the target variable have?

--predictors <v1> ... <vn>

A list of the names of the predictor variables

--types <t1> ... <tm>

A list of the types of the predictor variables. Each type should be one of numeric, word or text. Types can be abbreviated to their first letter. If too few types are given, the last one is used again as necessary. Use word for categorical variables.

--passes

The number of times the input data should be re-examined during training. Small input files may need to be examined dozens of times. Very large input files probably don’t even need to be completely examined

--lambda

Controls how much the algorithm tries to eliminate variables from the final model. A value of 0 indicates no effort is made. Typical values are on the order of 0.00001 or less.

--rate

The initial learning rate. This can be large if you have lots of data or use lots of passes because it is decreased progressively as data is examined.

--noBias

Do not use the built-in constant in the model (this eliminates the Intercept Term from the model. Occasionally this is a good idea, but generally it is not since the SGD learning algorithm can usually eliminate the intercept term if warranted.

--features

The size of the internal feature vector to use in building the model. A larger value here can be helpful, especially with text-like input data.

Runlogistic model评价

$ bin/mahout runlogistic --input donut.csv --model ./model \

--auc --confusion

AUC = 0.57

confusion: [[27.0, 13.0], [0.0, 0.0]]

AUC 和confusion表示分类准确率 AUC(readingData的正确率越接近1越好) confusion(识别率和误识率)

参数说明

Option

What it Does

--quiet

Produce less status and progress output

--auc

Print out AUC score for model versus input data after reading data

--scores

Print target variable value and scores for each input example

--threshold <t>

Set the threshold for confusion matrix computation to t (default 0.5)

--confusion

Print out confusion matrix for a particular threshold (See --threshold)

--input <input>

Read data records from specified file or resource

--model <model>

Read model from specified file

 

分类看起来比聚类和推荐麻烦多了

分类算法与聚类和推荐算法的不同:必须是有明确结果的,必须是有监督的,主要用于预测和检测

Mahout的优势 mahout的分类算法对资源的要求不会快于训练数据和测试数据的增长速度,而且可以转换为分布式应用(数据规模如果不够大 Mahout表现可能不及其他类型的系统)

关键词表:

Key idea

Description

Model

A computer program that makes decisions; in classification, the output of the training algorithm is a model

Training Data

Subset of training examples labeled with the value of the target variable and used as input to the learning algorithm to produce the model

Test Data

Withheld portion of training examples given to the model without the value for the target variable (although the value is known) and used to evaluate the model

Training

Learning process that uses training data to produce a model. That model can then compute estimates of the target variable given the predictor variables as inputs.

Training example

Entity with features that will be used as input for learning algorithm

Feature

A known characteristic of a training or new example; a “feature” is equivalent to saying a “characteristic”.

Variable

In this context, a variable is equivalent to a the value of a feature or a function of several features. This usage is somewhat different from a normal variable in a computer program.

Record

A container where an example is stored; such a record is composed of fields.

Field

Part of a record that contains the value of a feature (variable)

Predictor variable

Feature selected for use as input for a classification model. Not all features need be used. Some features may be algorithmic combinations of other features.

Target variable

Feature that the classification model is attempting to estimate: the target variable is categorical and its determination is the aim of the classification system.

一般来说:80-90%的数据作为training Data 其他数据作为Test Data数据

Mahout分类中的四种数据类型

Type of Value

Description

Continuous

This type of value is a floating point value. This might be a price, a weight, a time, a value or anything else that has a numerical magnitude and where this magnitude is the key property of the value.

Categorical

A categorical value can have one of a pre-specified set of values. Typically the set of categorical values is relatively small and may be as small as two, although the set can be quite large. Boolean values are generally treated as categorical values. Another example might be a vendor id.

Word-like

A word-like value is like a categorical value, but it has an open-ended set of possible values.

Text-like

A text-like value is a sequence of word-like values, all of the same kind. Text is the classic example of a text-like value, but a list of email addresses or URL’s is also text-like.

数据类型

Name

Type

Value

from-address

word-like

George <george@fumble-tech.com>

in-address-book?

categorical(TRUE, FALSE)

TRUE

non-spam-words

text-like

“Ted”, “Mahout”, “User”, “lunch”

spam-words

text-like

“available”

unknown-words

continuous

0

message-length

continuous

31

分类的应用步骤

Stage

Step

1. Training the model

Define target variable

Collect historical data

Define predictor variables

Select a learning algorithm

Use learning algorithm to train model

2. Evaluating the model

Run test data

Adjust input (different predictor variables and/or algorithm)

3. Using model in production

Input the new examples to estimate unknown target values

Retrain model as needed

Mahout的命令行工具

$ $MAHOUT_HOME/bin/mahout

An example program must be given as the first argument.

Valid program names are:

canopy: : Canopy clustering

cat : Print a file or resource as the logistic regression models would see it

...

runlogistic : Run a logistic regression model against CSV data

...

trainlogistic : Train a logistic regression using stochastic gradient descent

demo:

cat 查看一个文件

$ bin/mahout cat donut.csv

"x","y","shape","color","k","k0","xx","xy","yy","a","b","c","bias"

0.923307513352484,0.0135197141207755,21,2,4,8,0.852496764213146,...,1

0.711011884035543,0.909141522599384,22,2,3,9,0.505537899239772,...,1

...

0.67132937326096,0.571220482233912,23,1,5,2,0.450683127402953,...,1

0.548616112209857,0.405350996181369,24,1,5,3,0.300979638576258,...,1

0.677980388281867,0.993355110753328,25,2,3,9,0.459657406894831,...,1

$

Trainlogistic:根据数据训练生成model

$ $MAHOUT_HOME/bin/mahout trainlogistic --input donut.csv \

--output ./model \

--target color --categories 2 \

--predictors x y --types numeric \

--features 20 --passes 100 --rate 50

...

color ~ -0.157*Intercept Term + -0.678*x + -0.416*y

Intercept Term -0.15655

x -0.67841

y -0.41587

...

Option

Whatit Does

--quiet

Produce less status and progress output

--input <file-or-resource>

Use the specified file or resource as input

--output <file-for-model>

Put the model into the specified file

--target <variable>

Use the specified variable as the target

--categories <n>

How many categories does the target variable have?

--predictors <v1> ... <vn>

A list of the names of the predictor variables

--types <t1> ... <tm>

A list of the types of the predictor variables. Each type should be one of numeric, word or text. Types can be abbreviated to their first letter. If too few types are given, the last one is used again as necessary. Use word for categorical variables.

--passes

The number of times the input data should be re-examined during training. Small input files may need to be examined dozens of times. Very large input files probably don’t even need to be completely examined

--lambda

Controls how much the algorithm tries to eliminate variables from the final model. A value of 0 indicates no effort is made. Typical values are on the order of 0.00001 or less.

--rate

The initial learning rate. This can be large if you have lots of data or use lots of passes because it is decreased progressively as data is examined.

--noBias

Do not use the built-in constant in the model (this eliminates the Intercept Term from the model. Occasionally this is a good idea, but generally it is not since the SGD learning algorithm can usually eliminate the intercept term if warranted.

--features

The size of the internal feature vector to use in building the model. A larger value here can be helpful, especially with text-like input data.

Runlogistic model评价

$ bin/mahout runlogistic --input donut.csv --model ./model \

--auc --confusion

AUC = 0.57

confusion: [[27.0, 13.0], [0.0, 0.0]]

AUC 和confusion表示分类准确率 AUC(readingData的正确率越接近1越好) confusion(识别率和误识率)

参数说明

Option

What it Does

--quiet

Produce less status and progress output

--auc

Print out AUC score for model versus input data after reading data

--scores

Print target variable value and scores for each input example

--threshold <t>

Set the threshold for confusion matrix computation to t (default 0.5)

--confusion

Print out confusion matrix for a particular threshold (See --threshold)

--input <input>

Read data records from specified file or resource

--model <model>

Read model from specified file

mahout分类的更多相关文章

  1. mahout分类学习和遇到的问题总结

    这段时间学习Mahout有喜有悲.在这里首先感谢樊哲老师的指导.以下列出关于这次Mahout分类的学习和遇到的问题,还请大家多多提出建议:(全部文件操作都使用是在hdfs上边进行的). (本人用的环境 ...

  2. Mahout 分类算法

    实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu ...

  3. Mahout朴素贝叶斯文本分类

    Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...

  4. Mahout Bayes分类

    Mahout Bayes分类器是按照<Tackling the Poor Assumptions of Naive Bayes Text Classiers>论文写出来了,具体查看论文 实 ...

  5. Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏

    Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...

  6. 机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源

      机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源 相关主题   在信息时代,公司和个人的成功越来越依赖于迅速 ...

  7. Hadoop里的数据挖掘应用-Mahout——学习笔记<三>

    之前有幸在MOOC学院抽中小象学院hadoop体验课. 这是小象学院hadoop2.X的笔记 由于平时对数据挖掘做的比较多,所以优先看Mahout方向视频. Mahout有很好的扩展性与容错性(基于H ...

  8. Mahout源码分析之 -- 文档向量化TF-IDF

    fesh个人实践,欢迎经验交流!Blog地址:http://www.cnblogs.com/fesh/p/3775429.html Mahout之SparseVectorsFromSequenceFi ...

  9. 利用Mahout实现在Hadoop上运行K-Means算法

    利用Mahout实现在Hadoop上运行K-Means算法 一.介绍Mahout Mahout是Apache下的开源机器学习软件包,目前实现的机器学习算法主要包含有协同过滤/推荐引擎,聚类和分类三个部 ...

随机推荐

  1. tomcat web容器中,调用jersey client端报错的处理

    在web工程中,写main方法,运行ok. 发布到tomcat中后,报错. javax.ws.rs.core.UriBuilder.uri(Ljava/lang/String;)Ljavax/ws/r ...

  2. js的 new image()用法[转]

    创建一个Image对象:var a=new Image();    定义Image对象的src: a.src=”xxx.gif”;    这样做就相当于给浏览器缓存了一张图片. 图像对象: 建立图像对 ...

  3. JavaScript高级程序设计55.pdf

    输入模式 HTML5为文本字段新增了pattern属性,这个属性的值是一个正则表达式,用于匹配文本框中的值 例如,只想在允许在文本字段中输入数值 <input type="text&q ...

  4. Implement the hash table using array / binary search tree

    今天在复习Arrays and String 时看到一个很有趣的问题.希望跟大家分享一下. Implement the hash table using array / binary search t ...

  5. 你为什么学MSP430

    很清楚,很明白,目的性极强,你学这个,是为了竞赛,学51也是,学习FPGA也是,你压根打心眼里就没打算走硬件方向,原因不多说,尽管你还是喜欢硬件的,但是,现实是,一个人的精力是有限的,你啊,好好弄好你 ...

  6. hdoj 1787 GCD Again【欧拉函数】

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. WordPress文件上传与下载问题解决

    网上流传了一些修改WordPress文件上传大小限制的做法,大部分是一个版本,而且说得不够准确,特别是对于生手的指导性不强,本文总结了使用Wordpress博客的朋友在文件上传与下载时大小限制,及文件 ...

  8. AppiumLibrary实用函数介绍

    1. 点击按钮: Click Button index_or_name Click button 实例:Click Button index=0 作者通过实验发现在安卓手机应用测试中,name这个属性 ...

  9. MINA2.0原理

    转自:http://blog.csdn.net/liuzhenwen/article/details/5894279 客户端通信过程  1.通过SocketConnector同服务器端建立连接  2. ...

  10. Hibernate查询之Example查询

    org.hibernate.criterion.Example 类允许你通过一个给定实例构建一个条件查询. 此实例的属性值将做成查询条件. Cat cat = new Cat(); cat.setSe ...