Sumdiv(各种数学)
http://poj.org/problem?id=1845
题意:求A^B的所有约数的和再对9901取模;
做了这个学到了N多数学知识;
一:任意一个整数都可以唯一分解成素因子的乘积;A = p1^k1*p2^k2*......*pn^kn;
A先对2不断取模,当A%2==0时,2的次数加1,直到A%2!=0,A再尝试着对3不断取模.....依次进行下去,直到A = 1;
当A本身就是素数时,A^1就是素数本身的分解式(特殊情况,别忘了加判断);
这样A^B = p1^(k1*B) * p2(k2*B) * .......*pn^(kn*B);
二:一个数用素因子乘积表示后其约数和公式;
A = p1^k1*p2^k2*......*pn^kn;
则 素因子和 sum = (1+p1+p1^2+p1^3+......+p1^k1) * (1+p2+p2^2+p2^3......p2^k2) * ......*(1+pn+pn^1+pn^2+pn^3+.....pn^kn);
三:用二分递归求等比数列前n项和;
求1+ p+p^2+p^3+.......+p^n
若n是奇数,共有偶数项,sum = (1+p+p^2+....+p^n/2)*(1+p^(n/2+1));
若n是偶数,共有奇数项,sum = (1+p+p^2+.....+p^(n/2-1))*(1+p^(n/2+1))+p^n/2;
四:反复平方法求p^n;
ans = 1;
while(n>0)
{
if(n是奇数) ans = ans*p;
n = n/2;
p = p*p;
}
ans = p^n;
#include<stdio.h>
#include<string.h>
#include<math.h>
const int N = ;
const int mod = ;
int p[N];
int n[N];
int A,B; //将A分解成素因子的积,A = p[0]^n[0]+p[1]^n[1]+....+p[k-1 ]^n[k-1];
int Div(int A)
{
int k = ,i;
for(i = ; i*i <= A;)
{
if(A%i == )
{
n[k] = ;
p[k] = i;
while(!(A%i))
{
n[k]++;
A/=i;
}
k++;
}
if(i == )
i++;
else i += ;
}
if(A != )
{
p[k] = A;
n[k++] = ;
}
return k;
} long long power(long long p,long long n)//用反复平方法计算p^n;
{
long long sq = ;
while(n>)
{
if(n&)
sq = (sq*p)%mod;//若n是奇数,把p乘到sq;
n = n/;
p = p*p%mod;
}
return sq;
} long long cal(long long p,long long n)//用反复平方法计算1+p+p^2+....p^n;
{
if(n == )
return ;
if(n&)//如果n是奇数
return (cal(p,n/)*(+power(p,n/+)))%mod;
else return (cal(p,n/-)*(+power(p,n/+))+ power(p,n/))%mod;
} int main()
{
while(~scanf("%d %d",&A,&B))
{
int k,i,sum;
k = Div(A); sum = ;
for(i = ; i < k; i++)
{
sum = (sum*(cal(p[i],n[i]*B)%mod))%mod;
}
printf("%d\n",sum);
}
return ;
}
Sumdiv(各种数学)的更多相关文章
- POJ 1845 Sumdiv (数学,乘法逆元)
题意: 给出数字A和B,要求AB的所有因子(包括AB和1)之和 mod 9901 的结果. 思路: 即使知道公式也得推算一阵子. 很容易知道,先把分解得到,那么得到,那么的所有因子之和的表达式如下: ...
- 『sumdiv 数学推导 分治』
sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ1845 Sumdiv 数学?逆元?
当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...
- Sumdiv(快速幂+约数和)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16244 Accepted: 4044 Description C ...
- Sumdiv 等比数列求和
Sumdiv Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15364 Accepted: 3790 De ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
- ACM数学知识体系
在盛情收到学弟邀请给他们整理ACM数学方面的知识体系,作为学长非常认真的弄了好久,希望各学弟不辜负学长厚爱!!!非常抱歉因为电脑全盘格式化好多word.PPT都丢失,我尽量具体地给大家找到各知识点学习 ...
- B - Sumdiv(第三周)
B - Sumdiv 题目链接:https://vjudge.net/contest/154063#problem/B 题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路 ...
随机推荐
- 前端工具之WebPack解密--使用
接上一篇的内容继续来说,背景篇的内容主要是介绍web前端工具的出现的原因和当前主要JavaScript模块化编程的几种规范!这篇内容主要介绍webpack的初级使用! 注意:目前webpack分为两个 ...
- matlab切比雪夫拟合
matlab中没有切比雪夫拟合的现成算法,这里把我程序中的这部分抽出来,说一下. 1.首先是切比雪夫计算式 function [ res ] = ChebyShev(num,i) res=; else ...
- (转)system()函数
[C/C++]Linux下system()函数引发的错误 今天,一个运行了近一年的程序突然挂掉了,问题定位到是system()函数出的问题,关于该函数的简单使用在我上篇文章做过介绍: http:/ ...
- Store update, insert, or delete statement affected an unexpected number of rows ({0}).
问题描述 Store update, insert, or delete statement affected an unexpected number of rows ({0}). Entities ...
- WPF Paragraph获取或修改文本内容
一.说明 Paragraph继承自Block,Block继承自TextElement,在TextElement中 // // 摘要: // 获取表示元素中内容末尾的 System.Windows.Do ...
- 认识k_BackingField【转】
事情从Json的序列化和反序列化说起. 在C#2.0的项目中,以前经常使用Json.Net实现序列化和反序列化.后来从c#3.0中开始使用新增的DataContractJsonSerializer进行 ...
- mysql数据库优化日志(更)-howyue
1)记一次首页查询优化 优化前: 优化后: 主要优化: 1.select查询只查询需要字段: 2.where条件字段添加索引:
- ContextSwitchDeadlock was detected Message(读取注册表时出现).
google的时候,在StackOverflow中得到个暂时解决的方法: http://stackoverflow.com/questions/2797677/contextswitchdeadloc ...
- 关于SQL IO的一些资料
前些天在做优化的时候发现一个有意思的现象,单纯的SQL执行很快,秒级返回,但是页面响应却很慢,一直在想这是为什么呢?有点怀疑服务器的IO有问题,想了想做了个实验,模拟了同样的场景,通过优化SQL将 ...
- 如何:在 StackPanel 和 DockPanel 之间进行选择
虽然可以使用 DockPanel 或 StackPanel 来堆叠子元素,但这两个控件并不总是会产生相同的结果. 例如,子元素的放置顺序可能会影响 DockPanel 中子元素的大小,但不会影响 St ...