Crack Mathmen

TimeLimit: 1000ms   Memory
limit: 65536K  有疑问?点这里^_^

题目描述

Since mathmen take security very seriously, theycommunicate in encrypted messages. They cipher their texts
in this way: for everycharacther c in the message, they replace c with f(c) = (the ASCII code ofc)n mod 1997 if f(c)
< 10, they put two preceding zeros in front off(c) to make it a three digit number; if 10 <= f(c) < 100, they put onepreceding zero in front of f(c)
to make it a three digit number.

For example, if they choose n = 2 and themessage is "World" (without quotation marks), they encode themessage like this:

1. the first character is 'W', and it'sASCII code is 87. Then f(′W′) =87^2 mod
997 = 590.

2. the second character is 'o', and it'sASCII code is 111. Then f(′o′) = 111^2mod
997 = 357.

3. the third character is 'r', and it'sASCII code is 114. Then f(′r′) =114^2 mod
997 = 35. Since 10 <= f(′r′) < 100,they add a 0 in front and make it 035.

4. the forth character is 'l', and it'sASCII code is 108. Then f(′l′) =108^2 mod
997 = 697.

5. the fifth character is 'd', and it'sASCII code is 100. Then f(′d′) =100^2 mod
997 = 30. Since 10 <= f(′d′) < 100,they add a 0 in front and make it 030.

6. Hence, the encrypted message is"590357035697030".

One day, an encrypted message a mathmansent was intercepted by the human being. As the cleverest one, could youfind out what the plain text (i.e., the message before encryption) was?

输入

The input contains multiple test cases. The first line ofthe input contains a integer, indicating the number of test cases in theinput. The first line of each
test case contains a non-negative integer n (n <=10^9). The second line of each test case contains a string of digits. The lengthof the string is at most
10^6.

输出

For each test case, output a line containing the plaintext. If their are no or more than one possible plain
text that can be encryptedas the input, then output "No Solution" (without quotation marks). Since mathmen use only
alphebetical letters and digits, you can assume that no characters other than alphebetical letters and digits may occur in the
plain text. Print a line between two test cases.

示例输入

3

2

590357035697030

0

001001001001001

1000000000

001001001001001

示例输出

World

No Solution

No Solution

/*************************

一道很高大上的数论题,开始看的一道  大神的,用数论的方法解的:http://limyao.com/?p=113#comment-111

大神用的有素数原根,完全剩余系,离散对数,模线性方程,知识点很多,也很难。。

有点小困难,然后我和小伙伴修昊讨论了下,觉得最初的想法——打表应该可以,然后就付诸行动了。。

我写的时候有一点没想通,也是很关键的一点,加密算法  原码 转换到  加密码,加密码会出现重复的情况,这个我没判断到,后开在小伙伴的解释下,瞬间顿悟,然后,恩就A了。

**********************/

Code:

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
char ar[1000],br[340000],str[10000005];
int cal(int temp,int t)//位运算快速幂模
{
int ans = 1;
while(t)
{
if(t&1)
ans = (ans * temp) % 997;
temp = temp * temp % 997;
t = t >> 1;
}
return ans;
} bool init(int n)
{
memset(ar,'\0',sizeof(ar));
int i,tmp;
for(i = 32;i<=126;i++) // ASCII 码 打表,
{
if(ar[cal(i,n)]=='\0') // 判断 原码 ->加密码 转换过程中是否重复,重复则直接返回false
ar[cal(i,n)] = char(i); // 加密码 作数组下标,匹配时直接寻找,无需查找
else
return false;
}
return true;
} int main()
{
int n,c,i,j,len,cur;
bool now;
cin>>c;
while(c--)
{
now = true;
memset(br,'\0',sizeof(br));
cin>>n;
cin>>str;
len = strlen(str);
j = 0;
if(init(n))
{
for(i = 0;i<len;i+=3)
{
cur = (str[i]-'0') * 100 + (str[i+1]-'0') * 10 + str[i+2] - '0';
if(ar[cur] == '\0')
{
now = false;
break;
}
br[j++] = ar[cur];
}
}
else
now = false;
if(n==0)
now = false; // n = 0 时 肯定为 No Solution
if(now)
cout<<br<<endl;
else
cout<<"No Solution"<<endl;
}
return 0;
}

Sdut 2165 Crack Mathmen(数论)(山东省ACM第二届省赛E 题)的更多相关文章

  1. Sdut 2164 Binomial Coeffcients (组合数学) (山东省ACM第二届省赛 D 题)

    Binomial Coeffcients TimeLimit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 输入 输出 示例输入 1 1 10 2 9 ...

  2. ACM Sdut 2158 Hello World!(数学题,排序) (山东省ACM第一届省赛C题)

    题目描述 We know thatIvan gives Saya three problems to solve (Problem F), and this is the firstproblem. ...

  3. sdut 2165:Crack Mathmen(第二届山东省省赛原题,数论)

    Crack Mathmen Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  Since mathmen take securit ...

  4. Sdut 2151 Phone Numbers (山东省ACM第一届省赛题 A)

    题目描述 We know thatif a phone number A is another phone number B's prefix, B is not able to becalled. ...

  5. 山东省第七届省赛 D题:Swiss-system tournament(归并排序)

    Description A Swiss-system tournament is a tournament which uses a non-elimination format. The first ...

  6. 山东省第六届省赛 H题:Square Number

    Description In mathematics, a square number is an integer that is the square of an integer. In other ...

  7. sdut2165 Crack Mathmen (山东省第二届ACM省赛)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/svitter/article/details/24270265 本文出自:http://blog.c ...

  8. ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)

    Problem Description Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109 ...

  9. 2013 ACM/ICPC 长春网络赛F题

    题意:两个人轮流说数字,第一个人可以说区间[1~k]中的一个,之后每次每人都可以说一个比前一个人所说数字大一点的数字,相邻两次数字只差在区间[1~k].谁先>=N,谁输.问最后是第一个人赢还是第 ...

随机推荐

  1. HW1.4

    public class Solution { public static void main(String[] args) { System.out.println("a a^2 a^3& ...

  2. 授权给adfs读取ad 在ad服务器上运行 - setspn 命令 -摘自网络

    Because the application pool identity for the AD FS 2.0 AppPool is running as a domain user/service ...

  3. cloud-utils cloud-utils-growpart cloud-init

  4. HDU 1102 Constructing Roads (最小生成树)

    最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...

  5. hdoj 1495 非常可乐【bfs隐式图】

    非常可乐 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. JAVA_3lesson

    程序设计守则 为了增加程序的可扩展性,维护性.可以采用interface, abstract   可以抽象出来:共同的方法,属性   开发系统时,主体构架使用接口,接口构成了系统的骨架.   要遵循开 ...

  7. webpack文档

    https://github.com/liunian/webpack-doc/blob/master/SUMMARY.md

  8. C#- 基于Lumisoft.NET组件的POP3邮件接管和删除操纵

    Lumisoft.NET组件是一个很是强大的邮件发送.邮件接管等功能的开源组件,一般用它来处理惩罚邮件的相干操纵,是很是合适的.之前也写过一些该组件的漫笔文章,不过主如果哄骗来发送邮件居多,比来因为项 ...

  9. Script Form

    Script Form 是SAP所提供的一款强大的报表设设计工具. 一.Script Form主要工具包括如下: 1)Form Painter:格式绘制器,用于格式的设定.TCoce:SE71. 2) ...

  10. cocos2d-x 屏幕适配新解

    转自:http://blog.leafsoar.com/archives/2013/05-10-19.html 为了适应移动终端的各种分辨率大小,各种屏幕宽高比,在 cocos2d-x(当前稳定版:2 ...