题目描述

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

输入

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

输出

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

样例输入

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3

样例输出

【样例输出1】
2
1
2
【样例输出2】
2
1
0


题解

EXgcd+BSGS

第一问直接快速幂。

第二问需要将xy≡z(mod p)转化为xy+tp=z,进而用EXgcd求解。

第三问是裸的BSGS。

根据费马小定理可知如果有解,答案一定小于p。

设m=√p(向上取整),再设x=km+b,其中k<m,b<m。

那么就有y^(km+b)≡z(mod p),即y^b≡z/y^km(mod p)。

于是我们可以将所有的y^b mod p加入到map中,然后枚举k,求出z/y^km,看是否有相同的值在map中即可。

本题特判比较多,具体详见代码。

#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
map<ll , ll> f;
map<ll , ll>::iterator it;
ll pow(ll x , ll y , ll mod)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
void exgcd(ll a , ll b , ll &x , ll &y)
{
if(!b)
{
x = 1 , y = 0;
return;
}
exgcd(b , a % b , x , y);
ll t = x;
x = y , y = t - a / b * y;
}
int main()
{
int T , k;
scanf("%d%d" , &T , &k);
while(T -- )
{
ll y , z , p;
scanf("%lld%lld%lld" , &y , &z , &p);
switch(k)
{
case 1: printf("%lld\n" , pow(y , z , p)); break;
case 2:
{
y %= p , z %= p;
ll t = gcd(y , p) , x1 , x2;
if(z % t != 0)
{
printf("Orz, I cannot find x!\n");
break;
}
y /= t , p /= t , z /= t , exgcd(y , p , x1 , x2) , x1 *= z;
while(x1 < 0) x1 += p;
while(x1 - p >= 0) x1 -= p;
printf("%lld\n" , x1);
break;
}
default:
{
y %= p , z %= p;
if(!y)
{
if(!z) printf("1\n");
else printf("Orz, I cannot find x!\n");
break;
}
ll m = (ll)ceil(sqrt(p)) , i , flag = 0 , t = 1 , temp;
f.clear();
for(i = 0 ; i < m ; i ++ )
{
if(f.find(t) == f.end()) f[t] = i;
t = t * y % p;
}
temp = pow(y , p - m - 1 , p) , t = 1;
for(i = 0 ; i <= m ; i ++ )
{
it = f.find(z * t % p) , t = t * temp % p;
if(it != f.end())
{
printf("%lld\n" , i * m + it->second) , flag = 1;
break;
}
}
if(!flag) printf("Orz, I cannot find x!\n");
}
}
}
return 0;
}

【bzoj2242】[SDOI2011]计算器 EXgcd+BSGS的更多相关文章

  1. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  2. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  3. 【BZOJ2242】计算器(BSGS,快速幂)

    [BZOJ2242]计算器(BSGS,快速幂) 题面 BZOJ 洛谷 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最小非负整数x: 3.给 ...

  4. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  5. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  7. 【数学 BSGS】bzoj2242: [SDOI2011]计算器

    数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...

  8. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  9. 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器

    说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...

随机推荐

  1. UVA 12169 Disgruntled Judge(Extended_Euclid)

    用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了. 注意数据范围不要爆int了. /********************************************* ...

  2. BZOJ 1229: [USACO2008 Nov]toy 玩具

    BZOJ 1229: [USACO2008 Nov]toy 玩具 标签(空格分隔): OI-BZOJ OI-三分 OI-双端队列 OI-贪心 Time Limit: 10 Sec Memory Lim ...

  3. python基础一 day17 复习

    # 迭代器# 生成器进阶 # 内置函数 # 55个 # 带key的 max min filter map sorted # 思维导图上红色和黄色方法必须会用 # 匿名函数 # lambda 参数,参数 ...

  4. 操作AD时出现 Access denied error

    CommitChanges General Access denied error in Active Directory 1.首先检查AD账户是否具有操作AD的访问权限 2.若用C#类操作AD,还要 ...

  5. java算法面试题:有一个字符串,其中包含中文字符、英文字符和数字字符,请统计和打印出各个字符的个数 按值的降序排序,如果值相同则按键值的字母顺序

    package com.swift; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; publi ...

  6. Qt之QThread随记

    这是一篇随记,排版什么的就没有那么好了:) 首先要知道,一个线程在资源分配完之后是以某段代码为起点开始执行的,例如STL内的std::thread,POSIX下的pthread等,都是以函数加其参数之 ...

  7. 【线性基 集合hash】uoj#138. 【UER #3】开学前的涂鸦

    还需要加强分析题目特殊性质,设计对应特殊算法,少想多写大力dfs剪枝不要管MLETLE直接上的能力 红包是一个有艺术细胞的男孩子. 红包由于NOI惨挂心情不好,暑假作业又多,于是他开始在作业本上涂鸦. ...

  8. 大蟒蛇肚子的"风暴"

    遇到了数据库连接数不足的问题,一般情况下会预留一些会话增加的情况,但在一些特殊情况下如连接风暴(logon storm), 如果在监听中没有做rate限流,对数据库来说巨大的冲击可能会导致数据库Han ...

  9. Python_循环判断表达式

    一.if判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. if判断结构: if 条件: 动作 elif 条件: 动作 else: 动作 if判断年龄: age_of_princal ...

  10. mysql五:索引原理与慢查询优化

    一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...