题目描述

给您一颗树,每个节点有个初始值。
现在支持以下两种操作:
1. C i x(0<=x<2^31) 表示将i节点的值改为x。
2. Q i j x(0<=x<2^31) 表示询问i节点到j节点的路径上有多少个值为x的节点。

输入

第一行有两个整数N,Q(1 ≤N≤ 100,000;1 ≤Q≤ 200,000),分别表示节点个数和操作个数。
下面一行N个整数,表示初始时每个节点的初始值。
接下来N-1行,每行两个整数x,y,表示x节点与y节点之间有边直接相连(描述一颗树)。
接下来Q行,每行表示一个操作,操作的描述已经在题目描述中给出。

输出

对于每个Q输出单独一行表示所求的答案。

样例输入

5 6
10 20 30 40 50
1 2
1 3
3 4
3 5
Q 2 3 40
C 1 40
Q 2 3 40
Q 4 5 30
C 3 10
Q 4 5 30

样例输出

0
1
1
0


题解

树链剖分+动态开点线段树

对树轻重链剖分,对每个权值开一棵动态开点线段树,修改时相当于删除再加入,查询时直接查询链上信息即可。

时间复杂度$O(m\log^2n)$,有更优秀的$O((m+n)\log n)$解法,但在本题中好像没什么必要= =

#include <map>
#include <cstdio>
#include <algorithm>
#define N 100010
#define lson l , mid , ls[x]
#define rson mid + 1 , r , rs[x]
using namespace std;
map<int , int> mp;
int a[N] , head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , deep[N] , si[N] , bl[N] , pos[N] , num;
int root[N << 2] , ls[N << 7] , rs[N << 7] , sum[N << 7] , tot , n , clo;
char str[5];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , deep[to[i]] = deep[x] + 1 , dfs1(to[i]) , si[x] += si[to[i]];
}
void dfs2(int x , int c)
{
int i , k = 0;
bl[x] = c , pos[x] = ++num;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && si[to[i]] > si[k])
k = to[i];
if(k)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x] && to[i] != k)
dfs2(to[i] , to[i]);
}
}
void update(int p , int a , int l , int r , int &x)
{
if(!x) x = ++tot;
sum[x] += a;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , lson);
else update(p , a , rson);
}
int query(int b , int e , int l , int r , int x)
{
if(!x) return 0;
if(b <= l && r <= e) return sum[x];
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
int solve(int x , int y , int c)
{
int ans = 0;
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]]) swap(x , y);
ans += query(pos[bl[x]] , pos[x] , 1 , n , root[c]) , x = fa[bl[x]];
}
if(deep[x] > deep[y]) swap(x , y);
ans += query(pos[x] , pos[y] , 1 , n , root[c]);
return ans;
}
int main()
{
int m , i , x , y , z;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
dfs1(1) , dfs2(1 , 1);
for(i = 1 ; i <= n ; i ++ )
{
if(!mp[a[i]]) mp[a[i]] = ++clo;
update(pos[i] , 1 , 1 , n , root[mp[a[i]]]);
}
while(m -- )
{
scanf("%s%d%d" , str , &x , &y);
if(str[0] == 'C')
{
update(pos[x] , -1 , 1 , n , root[mp[a[x]]]);
if(!mp[y]) mp[y] = ++clo;
update(pos[x] , 1 , 1 , n , root[mp[y]]);
a[x] = y;
}
else
{
scanf("%d" , &z);
if(!mp[z]) puts("0");
else printf("%d\n" , solve(x , y , mp[z]));
}
}
return 0;
}

【bzoj4999】This Problem Is Too Simple! 树链剖分+动态开点线段树的更多相关文章

  1. [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...

  2. 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)

    题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  3. BZOJ 3531 [Sdoi2014]旅行 树链剖分+动态开点线段树

    题意 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教.绝地教都是常见的信仰. 为了方便,我们用 ...

  4. bzoj3531: [Sdoi2014]旅行 (树链剖分 && 动态开点线段树)

    感觉动态开点线段树空间复杂度好优秀呀 树剖裸题 把每个宗教都开一颗线段树就可以了 但是我一直TLE 然后调了一个小时 为什么呢 因为我 #define max(x, y) (x > y ? x ...

  5. [ZJOI2019]语言(树链剖分+动态开点线段树+启发式合并)

    首先,对于从每个点出发的路径,答案一定是过这个点的路径所覆盖的点数.然后可以做树上差分,对每个点记录路径产生总贡献,然后做一个树剖维护,对每个点维护一个动态开点线段树.最后再从根节点开始做一遍dfs, ...

  6. BZOJ4999: This Problem Is Too Simple!树链剖分+动态开点线段树

    题目大意:将某个节点的颜色变为x,查询i,j路径上多少个颜色为x的点... 其实最开始一看就是主席树+树状数组+DFS序...但是过不去...MLE+TLE BY FCWWW 其实树剖裸的一批...只 ...

  7. 【BZOJ3531】[Sdoi2014]旅行 树链剖分+动态开点线段树

    [BZOJ3531][Sdoi2014]旅行 Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天 ...

  8. bzoj3531——树链剖分+动态开点线段树

    3531: [Sdoi2014]旅行 Time Limit: 20 Sec  Memory Limit: 512 MB Description S国有N个城市,编号从1到N.城市间用N-1条双向道路连 ...

  9. [LuoguU41039]PION后缀自动机 树链剖分+动态开点线段树

    链接 刚开始看出题人题解都吓蒙掉了,还以为是什么难题,结果就一板子题 思路:对每一个文件名开一棵线段树,然后树剖即可 #include<bits/stdc++.h> #define REP ...

随机推荐

  1. 【BZOJ4650】[NOI2016] 优秀的拆分(后缀数组)

    点此看题面 大致题意: 定义将一个字符串拆成\(AABB\)的形式为优秀拆分,求一个字符串所有子串的优秀拆分个数. 后缀数组 这题可是一道后缀数组黑题啊. 其实看完题解这题还是挺简单的. 大致思路 显 ...

  2. komodo-edit

    sudo add-apt-repository ppa:mystic-mirage/komodo-edit sudo apt-get update sudo apt-get install komod ...

  3. 2018.10.30 NOIp模拟赛 T1 改造二叉树

    [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论 ...

  4. Mysql--子查询、分页查询、联合查询

    一. 子查询的定义 出现在其他语句中的select语句,称为子查询或者内查询,外部的查询语句称为主查询或者外查询,子查询可以包含普通select可以包含的任何语句. 外部查询:select.inser ...

  5. 微信小游戏 demo 飞机大战 代码分析(四)(enemy.js, bullet.js, index.js)

    微信小游戏 demo 飞机大战 代码分析(四)(enemy.js, bullet.js, index.js) 微信小游戏 demo 飞机大战 代码分析(一)(main.js) 微信小游戏 demo 飞 ...

  6. 【Ecshop】将内置的 FCkeditor 更换为 UEditor

    1.下载UE,解压到includes/,更名目录名为ueditor 注意更改配置后端文件上传路径,参考文档 2.修改admin/includes/lib_main.php,添加 /** * 生成编辑器 ...

  7. 想成长为一名年薪50万+的实战型架构师?必掌握这7大实战技能经验--阿里mike

    想成为一名架构师,但是架构师对应的技能,我应该掌握哪些啊?以及掌握的程度是什么样的?如何成为一名真正的实战性架构师? 我简要分为以下7点来谈谈,从技能的角度抛砖引玉,希望你对你架构师之路有一定的参考. ...

  8. VMWare workstation Pro 14 For Linux key

    VMWare workstation Pro 14 For Linux key: (我使用的Linux 系统是 Ubuntu16.04, 64位 ) 镜像是官方网址下载的,你也可以自己去官方网址下载: ...

  9. unix gcc编译过程

    gcc编译过程 现代编译器常见的编译过程: 源文件-->预处理-->编译/优化-->汇编-->链接-->可执行文件 对于gcc而言: 第一步 预处理       命令: ...

  10. 动态规划:HDU2159-FATE(二维费用的背包问题)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...