逻辑回归用神经网络节点的方式表示

前面已经介绍过逻辑回归的模型,样本为(x,y) 其中y的值为1或0,假设x有2个特征,则对应关系如下图所示。

实际情况是需要求需要三个参数,因此输入层需要添加一个节点表示偏置项。通过此模型对于任何一个输入x,都会产生一个输出与之对应。

有了这个图就可以方便的介绍神经网络模型了。

神经网络模型和参数

下图所示的是一个简单的神经网络模型和加入偏置项的示意图,输入和输出完全相同。区别是,比起逻辑回归它多了两个节点的隐藏层。通过分解可以发现它是由3个逻辑回归组成,按下图出现的顺序命名为LR01,LR02,LR03。




完整的参数模型是

a1为输入层输入值,即为x的值为LR01,LR02的输入。a2为LR03的输入 a3为最终的输出值。z2为一到二的中间值,z3为二到三层的中间值。

前向传播计算cost function

模型需要确定的参数个数为9个。由逻辑回归可知,对于LR01有
\[z_1^{(2)}=\Theta_{10}^{(1)}*a_0^{(1)}+\Theta_{11}^{(1)}*a_1^{(1)}+\Theta_{12}^{(1)}*a_2^{(1)}\]
\[a_1^{(2)}=\frac 1 {1+e^{-z_1^{(2)}}}\]
对于LR02有
\[z_2^{(2)}=\Theta_{20}^{(1)}*a_0^{(1)}+\Theta_{21}^{(1)}*a_1^{(1)}+\Theta_{22}^{(1)}*a_2^{(1)}\]
\[a_2^{(2)}=\frac 1 {1+e^{-z_2^{(2)}}}\]
LR01和LR02用矩阵描述如下
\[\Theta^{(1)}*a^{(1)}=z^{(2)}\]
其中
\[a^{(1)}=
\begin{pmatrix}
a_0^{(1)} \\
a_1^{(1)} \\
a_2^{(1)} \\
\end{pmatrix}
\]
\[\Theta^{(1)}=
\begin{pmatrix}
\Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} \\
\Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} \\
\end{pmatrix}
\]
\[z^{(2)}=
\begin{pmatrix}
z_1^{(2)} \\
z_2^{(2)} \\
\end{pmatrix}
\]
第二层到第三层,首先需要加入偏置节点a2_0然后第三层中间值和输出值为。
\[z_1^{(3)}=\Theta_{10}^{(2)}*a_0^{(2)}+\Theta_{11}^{(2)}*a_1^{(2)}+\Theta_{12}^{(2)}*a_2^{(2)}\]
\[a_1^{(3)}=\frac 1 {1+e^{-z_1^{(3)}}}\]

那么最终的损失函数为
\[J(\Theta)=-\frac 1 m[\sum_{i=1}^my^{(i)}log(a_1^{(3)})^{(i)}+(1-y^{(i)})log(1-(a_1^{(3)})^{(i)})]\]
下一步需要做的是使用梯度下降的方法求出所有的参数值。

反向传播计算梯度下降

对于每个参数\(\Theta^{(l)}_{ij}\)需要计算\(\frac{\partial J(\Theta)}{\partial \Theta^{(l)}_{ij}}\),计算公式如下。

\[\frac{\partial J(\Theta)}{\partial \Theta^{(2)}}=a^{(2)}\delta^{(3)}\]

\[\delta^{(3)}=(a^{(3)}_1-y).*g^{'}(z^{(3)})=(a^{(3)}_1-y)a^{(3)}(1-a^{(3)})\]

\[\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=a^{(1)}\delta^{(2)}\]

\[\delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}.*g^{'}(z^{(2)})=(\Theta^{(2)})^T\delta^{(3)}a^{(2)}(1-a^{(2)})\]
示例一共有9个参数,现在只需要推导出4个。使用的是求导的链式法则。

Neural Network的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Neural Network Toolbox使用笔记1:数据拟合

    http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. How to implement a neural network

    神经网络的实践笔记 link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 1. 生成训练数据 ...

  5. CS224d assignment 1【Neural Network Basics】

    refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...

  6. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  7. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  8. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  9. (转)The Neural Network Zoo

    转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...

  10. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

随机推荐

  1. js中的位运算符 ,按位操作符

    按位操作符(Bitwise operators) 将其操作数(operands)当作32位的比特序列(由0和1组成),而不是十进制.十六进制或八进制数值.例如,十进制数9,用二进制表示则为1001.按 ...

  2. BZOJ3624: [Apio2008]免费道路(最小生成树)

    题意 题目链接 Sol 首先答案一定是一棵树 这棵树上有一些0边是必须要选的,我们先把他们找出来,如果数量$\geqslant k$显然无解 再考虑继续往里面加0的边,判断能否加到k条即可 具体做法是 ...

  3. JS中关于clientWidth offsetWidth scrollWidth 等的区别

    网页可见区域宽: document.body.clientWidth;网页可见区域高: document.body.clientHeight;网页可见区域宽: document.body.offset ...

  4. 【MFC】MFCMenuButton 的用法

    背景:因为对话框界面上的空间有限,为了节省空间,我决定采用一个MFCMenuButton用来实现同一类按钮事件.本来我打算设置两个按钮:“单个删除文件”和“清空所有文件”两个按钮,但是空间太小,而且这 ...

  5. Coursera 算法二 week 4 Boggle

    这次的作业主要用到了单词查找树和深度优先搜索. 1.在深度优先搜索中,在当前层的递归调用前,将marked数组标记为true.当递归调用返回到当前层时,应将marked数组标记为false.这样既可以 ...

  6. Ruby 学习笔记(一)

    环境搭建 本文基于Mac OS,windowns坑较多,建议使用Mac. xcode-select -p 检查是否安装xcode-select, 如果没有,通过xcode-select --insta ...

  7. POJ-2226 Muddy Fields---二分图匹配+巧妙构图

    题目链接: https://vjudge.net/problem/POJ-2226 题目大意: 用宽度为1长度不限的木板将水洼‘*’盖住而不盖住草‘.' Sample Input 4 4 *.*. . ...

  8. GBDT回归的原理及Python实现

    一.原理篇 1.1 温故知新回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现.链接如下: 回归树的原理及Python实现 1.2 预测年龄仍然以预测同事年龄来举例,从<回归树&g ...

  9. python_8_guess

    #python3和2都可以 #方法1 age_of_oldboy=56 count=0 while True: if count==3: break guess_age=int(input('gues ...

  10. python_68_迭代器

    ''' 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的ge ...