题解

最小割+主席树优化建图

首先看到每个点只有\(0/1\)两种状态就想到最小割

然后由于有一个限制是点\(i\)是黑点且有符合条件的白点就会减去\(p_i\)

所以我们将\(S\)集合设为黑点集合,\(T\)集合设为白点集合

然后\(S\to i\)流量为\(b_i\) , \(i\to T\)流量为\(w_i\)

然后我们就需要考虑如果一个点选择了黑点那么就要去判断有没有符合条件的白点

所以我们对每个\(i\)新建一个\(i'\)

然后\(i\to i'\)连流量为\(p_i\)的边

\(i'\)向符合条件的\(j\)连流量为\(INF\)的边

由于是求最大值,所以答案就是\(\sum_{b_i+w_i}-\)最小割

这样建图的最小割就可以起到自动分类讨论的作用

例如如果\(i\)为黑点,\(j\)为白点,那么就会产生\(-p_i\)的贡献

这样的话如果我们实际选择了\(i\)为黑点,\(j\)为白点

那么这一路的流量就是\(w_i+b_j+\min(b_i-w_i,p_i,w_j-b_j)\)

这样就自动的起到了分类讨论的作用

然后我们发现一个黑点对于符合条件的白点的要求是一个二维的限制

所以可以考虑主席树优化建图

跟线段树优化建图比较类似

就是在继承上一棵主席树的时候两棵主席树之间要互相连一条边

void insert() {
t[++tot] = t[now] ;
add_edge(tot , now) ; /*注意这里要连边*/
now = tot ;
}

代码

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define ls (t[now].lsn)
# define rs (t[now].rsn)
const int M = 500005 ;
const int N = 5050 ;
const int INF = 1e9 ;
using namespace std ; inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
} map < int , int > mp ;
int n , tot , S , T , cnt ;
int num = 1 , hea[M] , ans ;
int rt[N] , s[N] , suc[N] , idk[N] , d[M] ;
int a[N] , b[N] , w[N] , lp[N] , rp[N] , p[N] ; struct E { int nxt , to , dis ; } edge[M * 5] ;
struct Node { int lsn , rsn ; } t[M] ;
inline void Insert_edge(int from , int to , int dis) {
edge[++num].nxt = hea[from] ; edge[num].to = to ;
edge[num].dis = dis ; hea[from] = num ;
}
inline void add_edge(int u , int v , int w) {
Insert_edge(u , v , w) ;
Insert_edge(v , u , 0) ;
}
inline int Gid(int x) {
int l = 1 , r = cnt , ret = 0 , mid ;
while(l <= r) {
mid = (l + r) >> 1 ;
if(suc[mid] <= x) l = mid + 1 , ret = mid ;
else r = mid - 1 ;
}
return ret ;
} void Insert(int id , int x , int l , int r , int &now) {
t[++tot] = t[now] ; add_edge(tot , now , INF) ; now = tot ;
if(l == r) { add_edge(now , id , INF) ; return ; }
int mid = (l + r) >> 1 ;
if(mid >= x) Insert(id , x , l , mid , ls) ;
else Insert(id , x , mid + 1 , r , rs) ;
if(ls) add_edge(now , ls , INF) ;
if(rs) add_edge(now , rs , INF) ;
}
void Add(int id , int L , int R , int l , int r , int now) {
if(now <= n) return ;
if(l >= L && r <= R) { add_edge(id , now , INF) ; return ; }
int mid = (l + r) >> 1 ;
if(mid >= R) Add(id , L , R , l , mid , ls) ;
else if(mid < L) Add(id , L , R , mid + 1 , r , rs) ;
else Add(id , L , mid , l , mid , ls) , Add(id , mid + 1 , R , mid + 1 , r , rs) ;
}
inline bool bfs() {
queue < int > q ; q.push(S) ;
memset(d , 0 , sizeof(d)) ; d[S] = 1 ;
while(!q.empty()) {
int u = q.front() ; q.pop() ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(!d[v] && edge[i].dis > 0) {
d[v] = d[u] + 1 ;
q.push(v) ; if(v == T) return true ;
}
}
}
return d[T] ;
}
int dfs(int u , int dis) {
if(u == T || !dis) return dis ; int sum = 0 ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(d[v] == d[u] + 1 && edge[i].dis > 0) {
int diss = dfs(v , min(dis , edge[i].dis)) ;
if(diss > 0) {
edge[i].dis -= diss ; edge[i ^ 1].dis += diss ;
dis -= diss ; sum += diss ; if(!dis) break ;
}
}
}
if(!sum) d[u] = -1 ; return sum ;
}
inline int dinic() {
int tmp = 0 ;
while(bfs())
tmp += dfs(S , INF) ;
return tmp ;
}
int main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) {
a[i] = read() ; b[i] = read() ; w[i] = read() ;
lp[i] = read() ; rp[i] = read() ; p[i] = read() ;
add_edge(S , ++tot , b[i]) ;
s[i] = a[i] ; ans += b[i] + w[i] ;
}
rt[0] = tot ;
sort(s + 1 , s + n + 1) ;
for(int i = 1 ; i <= n ; i ++) {
if(i == 1 || s[i] != s[i - 1]) ++ cnt ;
mp[s[i]] = cnt ; suc[cnt] = s[i] ;
}
for(int i = 1 ; i <= n ; i ++)
a[i] = mp[a[i]] ;
for(int i = 1 ; i <= n ; i ++) {
rt[i] = rt[i - 1] ;
Insert(i , a[i] , 0 , cnt , rt[i]) ;
}
for(int i = 1 ; i <= n ; i ++) {
idk[i] = ++ tot ;
add_edge(i , idk[i] , p[i]) ;
}
T = tot + 1 ;
for(int i = 1 ; i <= n ; i ++)
add_edge(i , T , w[i]) ;
suc[0] = -1 ;
for(int i = 1 , l , r ; i <= n ; i ++) {
l = Gid(lp[i]) , r = Gid(rp[i]) ;
if(lp[i] != suc[l]) ++ l ;
if(l > r) continue ;
Add(idk[i] , l , r , 0 , cnt , rt[i - 1]) ;
}
printf("%d\n",ans - dinic()) ;
return 0 ;
}

[BZOJ3128]a+b Problem的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. vue程序中组件间的传值方式

    vue程序在组件中进行传值有多种方式,这里记录我在项目中使用到的三种: 1. 父组件向子组件传值 2. 子组件向父组件传值 3. 通过路由传参 父组件通过props向子组件传值 在子组件script中 ...

  2. UVA10561 Treblecross —— SG博弈

    题目链接:https://vjudge.net/problem/UVA-10561 题意: 两个人玩游戏,轮流操作:每次往里面添加一个X,第一个得到XXX的获胜. 题解: 详情请看<训练指南&g ...

  3. UVA1378 A Funny Stone Game —— SG博弈

    题目链接:https://vjudge.net/problem/UVA-1378 题意: 两个人玩游戏,有n堆石子,两人轮流操作:于第i堆石子中取走一块石子,然后再往第j.k堆中各添加一块石子.其中 ...

  4. ArcGIS发布动态空间,并验证

    发布 发布方法见视频. 验证 发布动态空间后,页面底部有 点进去后,使用如下语法验证. {"id": 0,"source": {"type" ...

  5. 第二篇:python基础之核心风格

    阅读目录 一.语句和语法 二.变量定义与赋值 三.内存管理 内存管理: 引用计数: 简单例子 四.python对象 五.标识符 六.专用下划线标识符 七.编写模块基本风格 八.示范 一.语句和语法 # ...

  6. git bash使用端口转发连接服务器

    之前的配置是 url = user@xx.xx.xx.xx:/home/tutu/thelib/ww.git xx.xx.xx.xx是服务器的外网地址,其内网地址是zz.zz.zz.zz 但是现在服务 ...

  7. 【C/C++】计算两个整数的最大公约数和最小公倍数

    算法一 任何>1的整数都可以写成一个或多个素数因子乘积的形式,且素数乘积因子以非递减序出现. 则整数x,y可以分别标记为:x=p1x1p2x2...pmxm y=p1y1p2y2...pmym ...

  8. 【linux】lsof命令和{Linux下文件删除、句柄与空间释放问题}

      导读: 一.用事实说话 二.关于LSOF命令的其它用法: 三.参考文档:   正文: lsof:Finding open files with lsof 作用:查看文件被哪些进程打开 一.用事实说 ...

  9. 洛谷P1073最优贸易——双向取值

    题目:https://www.luogu.org/problemnew/show/P1073 由于任何城市都可以多次经过,所以可以随便走,也就不用太在意有向边和无向边,把无向边当做两条有向边处理: 根 ...

  10. 动态规划专题(一) HDU1087 最长公共子序列

    Super Jumping! Jumping! Jumping! 首先对于动态规划问题要找出其子问题,如果找的子问题是前n个序列的最长上升子序列,但这样的子问题不好,因为它不具备无后效性,因为它的第n ...