原题链接:http://poj.org/problem?id=1797

Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 24576   Accepted: 6510

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意

对于一条路径的限制大小,定义为这条路径上最短的那条边。给你一个无向图,问你从1出发到n的所有路径中,限制大小最大是多少。

题解

定义dp[i]表示从1走到 i 时的限制大小的最大值。然后就像spfa那样,每次从队列里面拿点出来松弛,如果松弛成功,则入队。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; int d[MAX_N];
int T; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
vector<edge> G[MAX_N];
void spfa(int s) {
que.push(node(s, INF));
d[s] = INF;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = min(d[u], G[u][i].cost);
if (t > d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
}
int n,m; int main() {
scanf("%d", &T);
int cas = ;
while (T--) {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)G[i].clear();
while (que.size())que.pop();
memset(d, , sizeof(d));
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
G[v].push_back(edge(u, c));
}
spfa();
printf("Scenario #%d:\n%d\n\n", ++cas, d[n]);
}
return ;
}

POJ 1797 Heavy Transportation SPFA变形的更多相关文章

  1. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  3. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  4. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  6. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  7. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  8. poj 1797 Heavy Transportation(最短路径Dijkdtra)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 26968   Accepted: ...

  9. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. (转)iOS获取设备型号

    //获得设备型号 + (NSString *)getCurrentDeviceModel:(UIViewController *)controller { ]; size_t len; char *m ...

  2. LeetCode(201) Bitwise AND of Numbers Range

    题目 Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numb ...

  3. k短路模板

    https://acm.taifua.com/archives/jsk31445.html 链接: https://nanti.jisuanke.com/t/31445 #include <io ...

  4. Mysql源码编译安装&主从复制

    一)camke源码编译安装mysql 1)创建软件安装目录software [root@master software]# ls cmake-2.8.8.tar.gz mysql-5.5.32.tar ...

  5. Windows中redis的下载及安装、设置

    本文是转载自:https://www.cnblogs.com/wxjnew/p/9160855.html 除了原文的东西还有自己遇到的一些问题,这里记录一下. 一.下载: 下载地址: https:// ...

  6. Selenium WebDriver-操作下拉框内容

    操作下拉框中的内容 #encoding=utf-8 import unittest import time import chardet from selenium import webdriver ...

  7. java 8:I / O 基础

    原文地址:https://docs.oracle.com/javase/tutorial/essential/io/index.html 说明:每一个点都有一篇详细的文章与之对应,每翻译完一篇文章会更 ...

  8. Bootstrap-table custome-ajax用法

    <div id="toolbar"> <div class="form-inline" role="form"> & ...

  9. iOS学习笔记45-Swift(五)协议

    一.Swift协议 协议是为方法.属性等定义一套规范,没有具体的实现,类似于Java中的抽象接口,它只是描述了方法或属性的骨架,而不是实现.方法和属性实现还需要通过定义类,函数和枚举完成. 1. 协议 ...

  10. Node.js 文件输入

    最近在尝试用 JavaScript (Node.js) 写题.为此,特地看了 ECMAScript 2017 Language Specification(大雾).写题一般是从文件输入,确切地说是,将 ...