原题链接:http://poj.org/problem?id=1797

Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 24576   Accepted: 6510

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

题意

对于一条路径的限制大小,定义为这条路径上最短的那条边。给你一个无向图,问你从1出发到n的所有路径中,限制大小最大是多少。

题解

定义dp[i]表示从1走到 i 时的限制大小的最大值。然后就像spfa那样,每次从队列里面拿点出来松弛,如果松弛成功,则入队。

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#define INF 1000006
#define MAX_N 1003
using namespace std; int d[MAX_N];
int T; struct node {
public:
int u, c; node(int uu, int cc) : u(uu), c(cc) { } node() { }
}; struct edge {
public:
int to, cost; edge(int t, int c) : to(t), cost(c) { } edge() { }
}; queue<node> que;
vector<edge> G[MAX_N];
void spfa(int s) {
que.push(node(s, INF));
d[s] = INF;
while (que.size()) {
node now = que.front();
que.pop();
if (now.c != d[now.u])continue;
int u = now.u;
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i].to;
int t = min(d[u], G[u][i].cost);
if (t > d[v]) {
d[v] = t;
que.push(node(v, t));
}
}
}
}
int n,m; int main() {
scanf("%d", &T);
int cas = ;
while (T--) {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)G[i].clear();
while (que.size())que.pop();
memset(d, , sizeof(d));
for (int i = ; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
G[u].push_back(edge(v, c));
G[v].push_back(edge(u, c));
}
spfa();
printf("Scenario #%d:\n%d\n\n", ++cas, d[n]);
}
return ;
}

POJ 1797 Heavy Transportation SPFA变形的更多相关文章

  1. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  2. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  3. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  4. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  6. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  7. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  8. poj 1797 Heavy Transportation(最短路径Dijkdtra)

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 26968   Accepted: ...

  9. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. Python基础-os模块 sys模块

    sys模块 与操作系统交互的一个接口 文件夹相关 os.makedirs('dirname1/dirname2')    可生成多层递归目录 os.removedirs('dirname1')    ...

  2. LeetCode(155) Min Stack

    题目 Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. ...

  3. Linux实现内容分发的主备模式的智能DNS

    BIND实现智能DNS的原理是通过view的方式,首先判断客户请求的来源,然后返回不同的IP 规划:为za.com域进行智能解析 分2个网段,192.168.1.0/24网段的请求解析到192.168 ...

  4. CodeForce:732B-Cormen — The Best Friend Of a Man

    传送门:http://codeforces.com/problemset/problem/732/B Cormen - The Best Friend Of a Man time limit per ...

  5. POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)

    传送门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K ...

  6. poj 3616 奶牛产奶问题 dp算法

    题意:奶牛产奶,农夫有m个时间段可以挤奶,在工作时间 f t 内产奶量为m,每次挤完奶后,奶牛需要休息R.问:怎么安排使得产奶量最大? 思路:区间dp  dp[i]表示第i个时段 对农夫工作的结束时间 ...

  7. linux学习-CentOS 7 环境下大量建置账号的方法

    一些账号相关的检查工具 pwck pwck 这个指令在检查 /etc/passwd 这个账号配置文件内的信息,与实际的家目录是否存在等信息, 还可以比对 /etc/passwd /etc/shadow ...

  8. 利用Windbg深入理解变量的存储模型

    下面的是一个简单的测试程序,基本包括了所有的变量类型,包括静态的,常量的,全局的,本地的,还有new出来的 #include <iostream> using namespace std; ...

  9. LINQ 的查询执行何时是延迟执行,何时是立即执行,以及查询的复用

    延迟执行的经典例子: 我们用 select ++i 就可以看到在foreach 时候,查询才被执行. public static void Linq99(){    int[] numbers = n ...

  10. 使用 Scene 类在 XNA 中创建不同的场景(八)

    平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXN ...