AC日记——【模板】二分图匹配 洛谷 P3386
题目背景
二分图
题目描述
给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数
输入输出格式
输入格式:
第一行,n,m,e
第二至e+1行,每行两个正整数u,v,表示u,v有一条连边
输出格式:
共一行,二分图最大匹配
输入输出样例
1 1 1
1 1
1
说明
n,m<=1000,1<=u<=n,1<=v<=m
因为数据有坑,可能会遇到v>m的情况。请把v>m的数据自觉过滤掉。
算法:二分图匹配
思路:
二分图模板;
来,上代码:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 1005
#define INF 0x7fffffff using namespace std; struct EdgeType {
int v,f,e;
};
struct EdgeType edge[maxn*maxn*]; int cnt,deep[maxn<<],ans,e;
int n,m,head[maxn<<],s=,t=(maxn<<)-; char Cget; inline void in(int &now)
{
now=,Cget=getchar();
while(Cget>''||Cget<'') Cget=getchar();
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
} bool bfs()
{
for(int i=s;i<=t;i++) deep[i]=-;
queue<int>que;deep[s]=,que.push(s);
while(!que.empty())
{
int now=que.front();que.pop();
for(int i=head[now];i;i=edge[i].e)
{
if(edge[i].f>&&deep[edge[i].v]<)
{
deep[edge[i].v]=deep[now]+;
if(edge[i].v==t) return true;
que.push(edge[i].v);
}
}
}
return false;
} int flowing(int now,int flow)
{
if(now==t||flow<=) return flow;
int oldflow=;
for(int i=head[now];i;i=edge[i].e)
{
if(edge[i].f<=||deep[edge[i].v]!=deep[now]+) continue;
int pos=flowing(edge[i].v,min(edge[i].f,flow));
if(pos>)
{
flow-=pos;
oldflow+=pos;
edge[i].f-=pos;
edge[i^].f+=pos;
if(flow==) return oldflow;
}
}
if(oldflow==) deep[now]=-;
return oldflow;
} int main()
{
in(n),in(m),in(e);
for(int i=;i<=n;i++)
{
edge[++cnt].v=i,edge[cnt].f=,edge[cnt].e=head[s],head[s]=cnt;
edge[++cnt].v=s,edge[cnt].f=,edge[cnt].e=head[i],head[i]=cnt;
}
for(int i=+n;i<=m+n;i++)
{
edge[++cnt].v=t,edge[cnt].f=,edge[cnt].e=head[i],head[i]=cnt;
edge[++cnt].v=i,edge[cnt].f=,edge[cnt].e=head[t],head[t]=cnt;
}
int u,v;
while(e--)
{
in(u),in(v);v+=n;
edge[++cnt].v=v,edge[cnt].f=,edge[cnt].e=head[u],head[u]=cnt;
edge[++cnt].v=u,edge[cnt].f=,edge[cnt].e=head[v],head[v]=cnt;
}
while(bfs()) ans+=flowing(s,INF);
cout<<ans;
return ;
}
AC日记——【模板】二分图匹配 洛谷 P3386的更多相关文章
- 二分图匹配 洛谷 [P3386]
最为经典的匈牙利算法 匈牙利算法应用了增广路的性质,实际上就是通过搜索可行的增广路,每搜到一条,匹配数++ 还可以应用配对的方法去理解,此算法的时间复杂度 (V*E),比较慢,但是实现较为简单. df ...
- AC自动机模板3【洛谷3796】
AC自动机的第三个模板 其实,个人觉得,目前我写的这三个不同的模板完全是可以合并在一起求解的. 只是,在这两个无关联的OJ上,同一个AC自动机都可以完成的问题被拆成了三道题而已. 因此,代码只需要略加 ...
- AC自动机模板1(【洛谷3808】)
题面 题目背景 这是一道简单的AC自动机模版题. 用于检测正确性以及算法常数. 为了防止卡OJ,在保证正确的基础上只有两组数据,请不要恶意提交. 题目描述 给定n个模式串和1个文本串,求有多少个模式串 ...
- AC日记——[SDOI2010]大陆争霸 洛谷 P3690
[SDOI2010]大陆争霸 思路: dijkstra模板: 代码: #include <bits/stdc++.h> using namespace std; #define maxn ...
- AC日记——双栈排序 洛谷 P1155
双栈排序 思路: 二分图染+模拟: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 1005 #define ...
- AC日记——[SDOI2015]星际战争 洛谷 P3324
题目描述 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战. 在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值 ...
- AC日记——联合权值 洛谷 P1351
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- AC日记——I Hate It 洛谷 P1531
题目背景 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感. 题目描述 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的 ...
- AC日记——神奇的幻方 洛谷 P2615(大模拟)
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
随机推荐
- centOS下lnamp安装
首先安装apache,mysql ,最后安装php 1>apache安装 安装:yum install -y httpd 运行:/bin/systemctl start httpd.servic ...
- python getopt模块使用方法
python中 getopt 模块,是专门用来处理命令行参数的 getop标准格式: 函数getopt(args, shortopts, longopts = []) shortopts 是短参数 ...
- Android开发——减小APK大小
0. 前言 APK的大小对APP的加载速度,使用内存大小和消耗功率多少有一定影响.如何减小APK的大小对于Android开发者是一个永恒的话题. 查阅了很多相关资料,并将其做了删减以及总结.本文原创, ...
- CodeForces 379F 树的直径 New Year Tree
题意:每次操作新加两个叶子节点,每次操作完以后询问树的直径. 维护树的直径的两个端点U,V,每次计算一下新加进来的叶子节点到U,V两点的距离,如果有更长的就更新. 因为根据树的直径的求法,若出现新的直 ...
- XP系统连接win10家庭版共享的打印机方法
1.高级共享设置.按照win7正常设置."家庭网络"公用网络”“工作网络”之类的注意根据当前配置设置! 2.由于控制面板无法开启Guest账户.需要用任务管理器,运行cmd(管理员 ...
- luogu1208 尼克的任务
倒着推就是了 #include <iostream> #include <cstdio> #include <vector> using namespace std ...
- Leetcode12--->Integer to Roman(整数转换为罗马数字)
题目: 给定一个整数,将其转换为罗马数字; 题目很简单,主要是依靠整数和罗马数字的对应表: I= 1:V= 5: X = 10: L = 50: C = 100: D = 500: M = 1000 ...
- 精通CSS高级Web标准解决方案(2-1 可视化格式模型之框模型)
浮动.定位.框模型这些控制在页面上安排和显示元素的方式,形成CSS布局. 盒子模型 页面上的每个元素都被看成一个矩形框. 盒子模型有两种,分别是 IE 盒子模型和标准 W3C 盒子模型.他们对盒子模型 ...
- 装箱I(01背包)
描述 给两个有一定容量的箱子,往里面装宝石(宝石总容量不能超过箱子容量),不同的宝石有不同的容量和价值.求两个箱子里最大宝石的价值. 输入 line 1: Input n; n:表示宝石数量 ...
- Codeforces Round #410 (Div. 2) A. Mike and palindrome
A. Mike and palindrome time limit per test 2 seconds memory limit per test 256 megabytes input stand ...