题面:

传送门

思路:

首先,我们需要证明一个结论:d(i*j)等于sigma(gcd(x,y)==1),其中x为i的约数,y为j的约数

对于nm的每一个质因子pi分别考虑,设n = pi^ai + n',m = pi^bi + m'

那么显然质因子pi对d(nm)的贡献为(ai+bi+1)

同理,考虑右边的式子,我们发现质数pi对右侧做的贡献仍然是(ai+bi+1),即如下的(x,y)

(pi^ai,1) (pi^(ai-1),1) ..... (1,1) .....(1,pi^(bi-1)) (1,pi^bi)

因此左右两式相同

因此原待求表达式化为如下形式:

由莫比乌斯函数第二情况得:上式可化为

其中g(i)表示前半个式子中的那段东西,相当于d(i)的前缀和

于是O(Tsqrt(min(n,m))轻松解决

顺便说一句,求约数个数也有线性的方法

记录c[i]表示i的最小的质因子的次数

每次更新这个,然后同时用c[i]+1更新d[i*pri[j]]即可

Code:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll mu[],pri[],c[],d[],cnt;bool vis[];
void init(ll n){
mu[]=d[]=c[]=;ll i,j,k;
for(i=;i<=n;i++){
if(!vis[i]){
pri[++cnt]=i;mu[i]=-;c[i]=;d[i]=;
}
for(j=;(j<=cnt)&&(i*pri[j]<=n);j++){
k=i*pri[j];vis[k]=;
if(i%pri[j]==){
d[k]=d[i]/(c[i]+)*(c[i]+);
c[k]=c[i]+;break;
}
mu[k]=-mu[i];
d[k]=d[i]*d[pri[j]];c[k]=;
}
}
for(i=;i<=n;i++) mu[i]+=mu[i-];
for(i=;i<=n;i++) d[i]+=d[i-];
}
ll n,m;
int main(){
ll i,j,T=read(),ans;init();
while(T--){
n=read();m=read();ans=;
if(n>m) swap(m,n);
for(i=;i<=n;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=(mu[j]-mu[i-])*d[n/i]*d[m/i];
}
printf("%lld\n",ans);
}
}

[SDOI2015][bzoj3994] 约数个数和 [莫比乌斯反演]的更多相关文章

  1. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  2. 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演

    [BZOJ3994][SDOI2015]约数个数和 Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...

  3. BZOJ3994: [SDOI2015]约数个数和(莫比乌斯反演)

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Out ...

  4. [SDOI2015][bzoj 3994][Luogu P3327] 约数个数和 (莫比乌斯反演)

    题目描述 设d(x)d(x)d(x)为xxx的约数个数,给定NNN.MMM,求 ∑i=1N∑j=1Md(ij)\sum^{N}_{i=1}\sum^{M}_{j=1} d(ij)i=1∑N​j=1∑M ...

  5. [SDOI2015]约数个数和 莫比乌斯反演

    ---题面--- 题解: 为什么SDOI这么喜欢莫比乌斯反演,,, 首先有一个结论$$d(ij) = \sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]$$为什么呢?首先,可以看 ...

  6. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  7. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  8. BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]

    2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...

  9. BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/deta ...

随机推荐

  1. Mybatis-注解开发

    常用注解 @Insert:实现新增 @Update:实现更新 @Delete:实现删除 @Select:实现查询 @Result:实现结果集封装 @Results:可以与@Result 一起使用,封装 ...

  2. Uva 填充正方形

    暴力出奇迹 #include<iostream> #include<cstdio> using namespace std; +; int T,n; char S[maxn][ ...

  3. 牛客NOIP提高组R1 C保护(主席树)

    题意 题目链接 Sol Orz lyq 我们可以把一支军队(u, v)拆分为两个(u, lca)和(v, lca) 考虑一个点x,什么时候军队对它有贡献,肯定是u或v在他的子树内,且lca在他的子树外 ...

  4. goaccess分析access.log

    接上一篇,开始学习goaccess使用~ 源码安装完成后,我的goaccess的配置文件goaccess.conf位于/usr/local/etc/ /usr/local/etc/goaccess/g ...

  5. nginx Keepalived高可用集群

    一.Keepalived高可用 1.简介 Keepalived软件起初是专为LvS负载均衡软件设计的,用来管理并监控LVS集群系统中各个服务节点的状态,后来又加入了可以实现高可用的VRRP功能.因此, ...

  6. LigerUI 快速开发UI框架 链接

    LigerUI 快速开发UI框架 http://www.ligerui.com/ jQuery ligerUI 中文官方网站 http://www.ligerui.com/demo.html

  7. java中的访问修饰符 (2013-10-11-163 写的日志迁移

    访问级别                 修饰符                    同类                    同包              子类                 ...

  8. PHP 作用域

  9. 第1-5章 慕课网微信小程序开发学习笔记

    第1章 前言:不同的时代,不同的Web --微信小程序商城构建全栈应用 http://note.youdao.com/noteshare?id=a0e9b058853dbccf886c1a890594 ...

  10. 大数运算:HDU-1042-N!(附N!位数的计算)

    解题心得: 这里使用了10000进制.很明显,因为是n!所以单个最大的数是10000*10000,使用万进制. 可以借鉴高精度的加法,单个乘了之后在进位. 很坑的一点,0!=1,数学不好WA了三次,尴 ...