Installing Apps Kattis - installingapps

Sandra recently bought her first smart phone. One of her friends suggested a long list of applications (more commonly known as “apps”) that she should install on the phone. Sandra immediately started installing the apps from the list, but after installing a few, the phone did not have enough disk space to install any more apps. Sometimes, the app installation failed because there was not even enough space to download the installation package. Other apps could be downloaded just fine, but had insufficient space to store the installed app.

Each app that Sandra installs has a download size dd and a storage size ss. To download the app, Sandra’s phone must have at least dd megabytes of free disk space. After the app has been installed, it then uses ss megabytes of disk space on the phone. The download size may be smaller than the storage size (e.g., if the app data is heavily compressed) or larger than the storage size (e.g., if the download contains material that might not get used such as translations to different languages). The installer is very efficient and can transform the downloaded package to an installed app without using any extra disk space. Thus, to install an app, the phone must have at least max(d,s)max(d,s) megabytes of free disk space.

Sandra quickly realised that she may have run out of space just because she installed apps in the wrong order. Thus, she decided to give the installation another try. She uninstalled all apps, and will now choose an installation order that lets her install the largest number of apps from the list. Sandra may not install any app more than once.

Help her determine what apps on the list she should install, and in what order.

Input

The input consists of:

  • One line with two integers nn, cc (1≤n≤500,1≤c≤100001≤n≤500,1≤c≤10000), the number of available apps and the available disk space of the phone in megabytes.

  • nn lines, each with two integers d,sd,s (1≤d,s≤100001≤d,s≤10000), the download size and storage size of an app, in megabytes.

Output

Output one line with the maximum number of apps that can be installed. Then output one line listing the numbers of those apps, in the order that Sandra should install them. In the case that no apps can be installed, this line can be omitted.

The apps are numbered from 11 to nn, in the order they are given in the input. If there are multiple optimal solutions, output any one of them.

Sample Input 1 Sample Output 1
2 100
99 1
1 99
2
1 2
Sample Input 2 Sample Output 2
2 100
500 1
1 500
0

题意:一个内存为V 的手机可以安装一些app,每一个app有两个不同的数值,表示已开始下载的大小和安装完以后的大小(必须下载的和安装后的大小都比手机的剩余容量要小才可以放进去),问最多可以放进去几个app,和放进去背包的一些顺序

题解:这是一个背包问题,但是普通的背包拿去是没有顺序关系的,这道题拿去的顺序关系是有关系的,前面的一个的拿去是有可能会影响后面一个app的,所以要先贪心一下。具体的贪心操作是按照d-s的大小来排序,就是下载的和安装后的相减的值的从大到小排序。为什么要这样来贪心我的理解是容量的改变多的话如果放在后面,他由于改变的多了会更加容易影响。同时这道题在uva上好像不能ac,可能是uva的数据源出问题了

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; typedef long long ll;
const int MAXN=1e4+5;
const double EPS=1e-8;
const int INF=0x3f3f3f3f;
const int MOD = 1e9+7;
struct Node{
int d,s,id;
}a[MAXN];
int f[505][MAXN],n,V;
bool cmp(const Node a, const Node b){
return (a.d - a.s) > (b.d - b.s);
//return a.s < b.s;
}
int main(){ ios::sync_with_stdio(false);
while(cin >> n >> V)
{
for(int i=1;i<=n;i++)
{
cin >> a[i].d >> a[i].s;
a[i].id = i;
}
sort(a+1,a+n+1,cmp);
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
for(int j=V;j>=0;j--)
{
f[i][j] = f[i-1][j];
if(V-(j-a[i].s) < a[i].d)
continue;
if(j < a[i].s)
continue;
f[i][j] = max(f[i-1][j], f[i-1][j-a[i].s]+1);
}
}
int Max = 0, v = 0;
for(int i=0;i<=V;i++)
{
if(f[n][i] > Max)
{
Max = f[n][i];
v = i;
}
}
cout << f[n][v] << "\n";
if(f[n][v] == 0) continue;
int q[MAXN],cnt = 0;
for(int i=n;i>=1&&v>0;i--)
{
if(f[i][v] == f[i-1][v-a[i].s]+1)
{
q[++cnt] = a[i].id;
v -= a[i].s;
}
}
for(int i=cnt;i>=1;i--)
{
cout << q[i] << " \n"[i==1] ;
}
}
return 0;
}

Installing Apps Kattis - installingapps (贪心 + 背包)的更多相关文章

  1. 【bzoj4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+背包dp

    题目描述 给出 $n$ 个括号序列,从中选出任意个并将它们按照任意顺序连接起来,求以这种方式得到匹配括号序列的最大长度. 输入 第一行包含一个正整数n(1<=n<=300),表示括号序列的 ...

  2. HDU3466Proud Merchants(贪心&背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=3466 题目大意是说n个物品每个物品的花费是p,但是如果你现在的钱少于q就买不了这个物品,每个物品的价值是v,求有 ...

  3. HDU 5303 Delicious Apples(贪心 + 背包 2015多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5303 Problem Description There are n apple trees plan ...

  4. bzoj4922 [Lydsy1706月赛]Karp-de-Chant Number 贪心+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4922 题解 记录每一个串的没有匹配的右括号 \()\) 的数量为 \(a_i\),为匹配的左括 ...

  5. AT4120-[ARC096D]Sweet Alchemy【贪心,背包】

    正题 题目链接:https://www.luogu.com.cn/problem/AT4120 题目大意 给出\(n\)个物品和一个容量\(m\),第\(i\)个物品体积为\(c_i\).除了第一个物 ...

  6. HDU 4003 [树][贪心][背包]

    /* 大连热身A题 不要低头,不要放弃,不要气馁,不要慌张 题意: 给一棵树,每条边上有权值.给一个起点,放置n个机器人,要求使得任意一个节点至少被一个机器人经过. 每个机器人经过某条边时的代价为这条 ...

  7. POJ2392Space Elevator(贪心+背包)

    Space Elevator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9970   Accepted: 4738 De ...

  8. 【贪心+背包】【HDU2546】【饭卡】

    饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  9. sdut2408 pick apples (贪心+背包)山东省第三届ACM省赛

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/svitter/article/details/24642587 本文出自:http://blog.c ...

随机推荐

  1. android 开发-spinner下拉框控件的实现

    Android提供实现下拉框功能的非常实用的控件Spinner. spinner控件需要向xml资源文件中添加spinner标签,如下: <Spinner android:id="@+ ...

  2. HDU 5501——The Highest Mark——————【贪心+dp】

    The Highest Mark Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  3. mysql必知必会学习笔记(1)

    chapter 13 13.1 数据分组 如果要将数据分为多个逻辑组怎么办?? 要用数据分组 13.2 创建分组 使用group by子句.group by会指示对mysql进行分组,然后对每个组进行 ...

  4. CSS中的IFC和BFC入门

    CSS中的IFC和BFC入门   提到CSS,首先会想到的就是盒模型,如果对于盒模型不是很理解的,看这里.这是一个基础的系列,看了盒模型还可以看看box-sizing,好了不多说了,下面介绍今天的重点 ...

  5. xml 文件转化Dictionary

    下面是xml文件 <?xml version="1.0" encoding="utf-8" ?><nodes> <国土局> ...

  6. php 01

    PHP 一.了解php 1.什么是php PHP 超文本预处理器 服务器端的脚本语言  是一种被广泛应用的开放源代码的多用途脚本语言  他可以嵌入到html中 尤其适用web开发 2.php在web中 ...

  7. Spring Boot : Swagger 2

    每次修改完代码需要找原本的API时楼主的内心是痛苦的,因为一般情况下都找不到,需要重新写一份.如果使用Swagger的话,只要加几个注解就可以实时生成最新的在线API文档,而且不仅仅是文档,同时支持A ...

  8. SQL Server(第二章) 字符串函数、日期时间函数、转换函数

    --1.CONCAT 函数:字符串连接(支持sql server2012 SQL规则 如果与NULL连接返回NILL) SELECT empid,CONCAT(firstname,lastname) ...

  9. 关于调用百度地图api在自己写的网页中实现和解决在https中正常显示

    百度地图开发者:http://lbsyun.baidu.com/index.php?title=jspopular 我们打开百度地图开发者网站,注册一个百度账号,然后打开控制台,开始创建应用:(如果你 ...

  10. pta 编程题14 Huffman Codes

    其它pta数据结构编程题请参见:pta 题目 题目给出一组字母和每个字母的频数,因为哈夫曼编码不唯一,然后给出几组编码,因为哈夫曼编码不唯一,所以让你判断这些编码是否符合是哈夫曼编码的一种. 解题思路 ...