Installing Apps Kattis - installingapps

Sandra recently bought her first smart phone. One of her friends suggested a long list of applications (more commonly known as “apps”) that she should install on the phone. Sandra immediately started installing the apps from the list, but after installing a few, the phone did not have enough disk space to install any more apps. Sometimes, the app installation failed because there was not even enough space to download the installation package. Other apps could be downloaded just fine, but had insufficient space to store the installed app.

Each app that Sandra installs has a download size dd and a storage size ss. To download the app, Sandra’s phone must have at least dd megabytes of free disk space. After the app has been installed, it then uses ss megabytes of disk space on the phone. The download size may be smaller than the storage size (e.g., if the app data is heavily compressed) or larger than the storage size (e.g., if the download contains material that might not get used such as translations to different languages). The installer is very efficient and can transform the downloaded package to an installed app without using any extra disk space. Thus, to install an app, the phone must have at least max(d,s)max(d,s) megabytes of free disk space.

Sandra quickly realised that she may have run out of space just because she installed apps in the wrong order. Thus, she decided to give the installation another try. She uninstalled all apps, and will now choose an installation order that lets her install the largest number of apps from the list. Sandra may not install any app more than once.

Help her determine what apps on the list she should install, and in what order.

Input

The input consists of:

  • One line with two integers nn, cc (1≤n≤500,1≤c≤100001≤n≤500,1≤c≤10000), the number of available apps and the available disk space of the phone in megabytes.

  • nn lines, each with two integers d,sd,s (1≤d,s≤100001≤d,s≤10000), the download size and storage size of an app, in megabytes.

Output

Output one line with the maximum number of apps that can be installed. Then output one line listing the numbers of those apps, in the order that Sandra should install them. In the case that no apps can be installed, this line can be omitted.

The apps are numbered from 11 to nn, in the order they are given in the input. If there are multiple optimal solutions, output any one of them.

Sample Input 1 Sample Output 1
2 100
99 1
1 99
2
1 2
Sample Input 2 Sample Output 2
2 100
500 1
1 500
0

题意:一个内存为V 的手机可以安装一些app,每一个app有两个不同的数值,表示已开始下载的大小和安装完以后的大小(必须下载的和安装后的大小都比手机的剩余容量要小才可以放进去),问最多可以放进去几个app,和放进去背包的一些顺序

题解:这是一个背包问题,但是普通的背包拿去是没有顺序关系的,这道题拿去的顺序关系是有关系的,前面的一个的拿去是有可能会影响后面一个app的,所以要先贪心一下。具体的贪心操作是按照d-s的大小来排序,就是下载的和安装后的相减的值的从大到小排序。为什么要这样来贪心我的理解是容量的改变多的话如果放在后面,他由于改变的多了会更加容易影响。同时这道题在uva上好像不能ac,可能是uva的数据源出问题了

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; typedef long long ll;
const int MAXN=1e4+5;
const double EPS=1e-8;
const int INF=0x3f3f3f3f;
const int MOD = 1e9+7;
struct Node{
int d,s,id;
}a[MAXN];
int f[505][MAXN],n,V;
bool cmp(const Node a, const Node b){
return (a.d - a.s) > (b.d - b.s);
//return a.s < b.s;
}
int main(){ ios::sync_with_stdio(false);
while(cin >> n >> V)
{
for(int i=1;i<=n;i++)
{
cin >> a[i].d >> a[i].s;
a[i].id = i;
}
sort(a+1,a+n+1,cmp);
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
for(int j=V;j>=0;j--)
{
f[i][j] = f[i-1][j];
if(V-(j-a[i].s) < a[i].d)
continue;
if(j < a[i].s)
continue;
f[i][j] = max(f[i-1][j], f[i-1][j-a[i].s]+1);
}
}
int Max = 0, v = 0;
for(int i=0;i<=V;i++)
{
if(f[n][i] > Max)
{
Max = f[n][i];
v = i;
}
}
cout << f[n][v] << "\n";
if(f[n][v] == 0) continue;
int q[MAXN],cnt = 0;
for(int i=n;i>=1&&v>0;i--)
{
if(f[i][v] == f[i-1][v-a[i].s]+1)
{
q[++cnt] = a[i].id;
v -= a[i].s;
}
}
for(int i=cnt;i>=1;i--)
{
cout << q[i] << " \n"[i==1] ;
}
}
return 0;
}

Installing Apps Kattis - installingapps (贪心 + 背包)的更多相关文章

  1. 【bzoj4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+背包dp

    题目描述 给出 $n$ 个括号序列,从中选出任意个并将它们按照任意顺序连接起来,求以这种方式得到匹配括号序列的最大长度. 输入 第一行包含一个正整数n(1<=n<=300),表示括号序列的 ...

  2. HDU3466Proud Merchants(贪心&背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=3466 题目大意是说n个物品每个物品的花费是p,但是如果你现在的钱少于q就买不了这个物品,每个物品的价值是v,求有 ...

  3. HDU 5303 Delicious Apples(贪心 + 背包 2015多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5303 Problem Description There are n apple trees plan ...

  4. bzoj4922 [Lydsy1706月赛]Karp-de-Chant Number 贪心+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4922 题解 记录每一个串的没有匹配的右括号 \()\) 的数量为 \(a_i\),为匹配的左括 ...

  5. AT4120-[ARC096D]Sweet Alchemy【贪心,背包】

    正题 题目链接:https://www.luogu.com.cn/problem/AT4120 题目大意 给出\(n\)个物品和一个容量\(m\),第\(i\)个物品体积为\(c_i\).除了第一个物 ...

  6. HDU 4003 [树][贪心][背包]

    /* 大连热身A题 不要低头,不要放弃,不要气馁,不要慌张 题意: 给一棵树,每条边上有权值.给一个起点,放置n个机器人,要求使得任意一个节点至少被一个机器人经过. 每个机器人经过某条边时的代价为这条 ...

  7. POJ2392Space Elevator(贪心+背包)

    Space Elevator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9970   Accepted: 4738 De ...

  8. 【贪心+背包】【HDU2546】【饭卡】

    饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  9. sdut2408 pick apples (贪心+背包)山东省第三届ACM省赛

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/svitter/article/details/24642587 本文出自:http://blog.c ...

随机推荐

  1. SQLServer数据库语句大全汇总

    目录清单CONTEXT LIST1.数据库DataBase 1.1数据库建立/删除create/drop database 1.2数据库备份与恢复backup/restore database2.数据 ...

  2. POJ 2253 ——Frogger——————【最短路、Dijkstra、最长边最小化】

    Frogger Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  3. springboot集成freemarker 配置application.properties详解

    #配置freemarker详解 #spring.freemarker.allow-request-override=false # Set whether HttpServletRequest att ...

  4. CocoStudio UIButton setPressedActionEnabled(true) 子控件不跟着缩放

    具体情况是这样的:美术给了我 一个按钮的背景图片  一个按钮的文字图片,用背景图片创建一个button,然后把文字图片添加进去(注意关闭文字图片的交互功能) 设置UIButton setPressed ...

  5. centos6.2安装内核

    http://vault.centos.org/6.2/updates/Source/SPackages/ yum install rpm-build redhat-rpm-config unifde ...

  6. LeetCode Merge Sorted Array 合并已排序的数组

    void merge(int A[], int m, int B[], int n) { int *a=A,*b=B; ,j=; ||m==){ //针对特殊情况,比如A或B中无元素的情况 & ...

  7. 显示 Mac隐藏的文件夹 命令语句

    默认情况下,模拟器的目录是隐藏的,要想显示出来,需要在Mac终端输入下面的命令 显示Mac隐藏文件的命令:defaults write com.apple.finder AppleShowAllFil ...

  8. selenium模糊匹配控件

    起因:在查找一些控件时,可能控件的一些属性是变化的,那在匹配时需要进行模糊匹配,模糊匹配,使用xpath 定位方式有种: contains(属性名,字符串):使用文本匹配,功能很强大 starts-w ...

  9. go语言,第三方包相对路径导入包引起的问题及解决方案(goquery)

    对go语言而言,跟踪init很显然包有且仅有一次被导入的可能. 但是重复引用了goquery包,后编译出现问题 项目涉及相关目录 ├── main.go└── parse    └── parse.g ...

  10. python_56_递归

    在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.(最大调用自己999次) def calc(n): print(n) if int(n/2)>0: retur ...