FZU 2204 7
题意:
n个有标号的球围成一个圈。每个球有两种颜色可以选择黑或白染色。问有多少种方案使得没有出现连续白球7个或连续黑球7个?
思路:
如果出现连续的8,9...个球同色,那么也必定含有7个同色。需要统计两部分,第一部分是将n个球看成一个序列,在不允许出现连续7个同色球的情况下,统计其可能出现的所有方案数。第二部分是,在第一部分中统计到的,有可能在一个圈的接口处可能出现超过6个球同色的,那么只需要再统计一下这一情况的方案数。问题在于这里。
序列上肯定不会超过6个同色,所以环的头尾加起来最多有12个同色球,即序列前6个,序列后6个。但是如果n<=12的话,还不会出现环接口处12个同色的情况,需要分类讨论。假设n=8,那么最多可能出现7个同色(根据第一部分的假设),若n=9,最多可能出现8个同色....若n=13,最多可能出现12个同色。先假设序列A={7,8,9,10,11,12}。
如何求第二部分?假如n=8,那么最多可能出现7个连色,那么就先假设前7个球都是黑色,剩下1个球,只能是白色了,所以方案数为1。但是前7个球可能是白色的,而剩下的1球是黑色的,这只需要将前面的方案数乘以2就行了。而这7个连色的球还可能在环上的不同位置出现,所以还得再乘以(13-7)。其他的大概也是这样推的,只是部分处理可能不同。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
#define ULL unsigned long long
using namespace std;
const double PI = acos(-1.0);
const int M=;
int cur, dp[][<<], ans[], up=<<, mod=<<; void DP(int n)
{
for(int i=; i<=n; i++)
{
ans[]=ans[i]=;
cur^=;
memset(dp[cur], , sizeof(dp[cur]));
for(int s=,t,v; s<up; s++)
{
v=dp[cur^][s];
t=(s&(mod-))<<; //取低5位 if(s+==up) //6黑
{
dp[cur][t]+=v;
ans[i]+=v; //只取白色结尾的
ans[]+=v;
}
else if(s==) //6白
{
dp[cur][t+]+=v;
ans[]+=v;
}
else
{
dp[cur][t]+=v;
dp[cur][t+]+=v;
ans[i]+=v;
ans[]+=v+v;
} dp[cur][t]%=M;
dp[cur][t+]%=M;
ans[i]%=M;
ans[]%=M;
}
}
} int cal(int n)
{
if(n<) return <<n;
if(n==) return ; memset(dp[cur=],,sizeof(dp[cur]));
dp[cur][up-]=; //默认前7个全黑,但是状态只记6位
DP(n);
int ans1=ans[]*%M, ans2=;
for(int k=; k<=; k++) //最多可能取到6+6=12个同颜色的
if(n-k>)
ans2=(ans2+ans[n-k]**(-k))%M; //枚举13-k个位置 return (ans1+M-ans2)%M;
} int main()
{
//freopen("input.txt","r",stdin);
int n, t, Case=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Case #%d: %d\n",++Case,cal(n));
}
return ;
}
AC代码
FZU 2204 7的更多相关文章
- fzu 2204 7 dp
题目链接: fzu 2204 7 题目描述: 给出n个小球,每个小球只能涂黑色或者是白色,七个连续的不能是同种颜色,问有多少种涂色方法? 解题思路: 刚开始没有考虑到是环形的,WA的风生水起,怪我咯! ...
- FZU - 2204 简单环形dp
FZU - 2204 简单环形dp 题目链接 n个有标号的球围成一个圈.每个球有两种颜色可以选择黑或白染色.问有多少种方案使得没有出现连续白球7个或连续黑球7个. 输入 第一行有多组数据.第一行T表示 ...
- FZU 2137 奇异字符串 后缀树组+RMQ
题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...
- FZU 1914 单调队列
题目链接:http://acm.fzu.edu.cn/problem.php?pid=1914 题意: 给出一个数列,如果它的前i(1<=i<=n)项和都是正的,那么这个数列是正的,问这个 ...
- ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】
FZU 2105 Digits Count Time Limit:10000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- FZU 2112 并查集、欧拉通路
原题:http://acm.fzu.edu.cn/problem.php?pid=2112 首先是,票上没有提到的点是不需要去的. 然后我们先考虑这个图有几个连通分量,我们可以用一个并查集来维护,假设 ...
- ACM: FZU 2107 Hua Rong Dao - DFS - 暴力
FZU 2107 Hua Rong Dao Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I6 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- ACM: FZU 2102 Solve equation - 手速题
FZU 2102 Solve equation Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & ...
随机推荐
- HRBUST - 1214 NOIP2000提高组 方格取数(多线程dp)
方格取数 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放人数字0.如下图所示(见样例 ,黄色和蓝色分别为两次走的路线,其中绿色的格子为黄色和蓝色共同走过的 ...
- FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
- yzm10的ACM集训小感
7月30号,ACM集训进行了两周,一切都已on the right way.这时的我适时地从题海中探出头,其实除了刷题,也该写点什么来总结下过去.首先,在第一周里,我学习了数据结构,知道了STL这么一 ...
- MS SQL读取JSON数据
前面有一篇<在SQL中直接把查询结果转换为JSON数据>https://www.cnblogs.com/insus/p/10905566.html,是把table转换为json. 现反过来 ...
- 汇总各个部门当前员工的title类型的分配数目,结果给出部门编号dept_no、dept_name、其当前员工所有的title以及该类型title对应的数目count
CREATE TABLE `departments` (`dept_no` char(4) NOT NULL,`dept_name` varchar(40) NOT NULL,PRIMARY KEY ...
- linux命令之grep,find
grep命令 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索 ...
- 微调Inception V3网络-对Satellite分类
目录 1. 流程概述 2. 准备数据集 2.1 Satellite数据集介绍 3. Inception V3网络 4. 训练 4.1 基于Keras微调Inception V3网络 4.2 Keras ...
- 关于lspci命令
lspci是一个用来查看系统中所有PCI总线以及连接到该总线上的设备的工具. 命令格式为 lspci -参数 (不加参数显示所有硬件设备) 至于有哪些参数及其详细用法可以看下这篇博客:http://w ...
- Hyperledger Fabric 第一次安装
第一次安装fabric有很多坑.记录一下,主要跟版本问题. 参考的是http://www.cnblogs.com/aberic/p/7532114.html 这篇博客. 我用的阿里云centOs 7. ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...