Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 44112   Accepted: 20713
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define MM(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long LL;
const int N=50010;
int n,q;
int maxm[N][18],minm[N][18];
void rmq()
{
int i,j;
for (j=1; (1<<j)<=n; j++)
{
for (i=1; i+(1<<j)-1<=n; i++)
{
minm[i][j]=min(minm[i][j-1],minm[i+(1<<(j-1))][j-1]);
maxm[i][j]=max(maxm[i][j-1],maxm[i+(1<<(j-1))][j-1]);
}
}
}
int main(void)
{
int i,j,l,r;
while (~scanf("%d%d",&n,&q))
{
MM(maxm);MM(minm);
for (i=1; i<=n; i++)
{
scanf("%d",&maxm[i][0]);
minm[i][0]=maxm[i][0];
}
rmq();
for (i=0; i<q; i++)
{
scanf("%d%d",&l,&r);
int k=(int)log2(r-l+1);
int ans=max(maxm[l][k],maxm[r-(1<<k)+1][k])-min(minm[l][k],minm[r-(1<<k)+1][k]);
printf("%d\n",ans);
}
}
return 0;
}

POJ——3264Balanced Lineup(RMQ模版水题)的更多相关文章

  1. poj 3080 Blue Jeans(水题 暴搜)

    题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...

  2. POJ 3984 - 迷宫问题 - [BFS水题]

    题目链接:http://poj.org/problem?id=3984 Description 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, ...

  3. poj 1007:DNA Sorting(水题,字符串逆序数排序)

    DNA Sorting Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 80832   Accepted: 32533 Des ...

  4. poj 1004:Financial Management(水题,求平均数)

    Financial Management Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 126087   Accepted: ...

  5. POJ 3176 Cow Bowling (水题DP)

    题意:给定一个金字塔,第 i 行有 i 个数,从最上面走下来,只能相邻的层数,问你最大的和. 析:真是水题,学过DP的都会,就不说了. 代码如下: #include <cstdio> #i ...

  6. poj 1658 Eva's Problem(水题)

    一.Description Eva的家庭作业里有很多数列填空练习.填空练习的要求是:已知数列的前四项,填出第五项.因为已经知道这些数列只可能是等差或等比数列,她决定写一个程序来完成这些练习. Inpu ...

  7. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  8. ACM: POJ 1401 Factorial-数论专题-水题

    POJ 1401 Factorial Time Limit:1500MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  9. POJ 1986 DIstance Query LCA水题

    给出一棵树,对于每一个询问,给出2个节点,输出2个节点的距离. 输入中有字母,那个是没有用的,不用管. 思路: 0.选择编号为1的节点作为树的root (注意:有些题的边是单向的,这时候我们要根据节点 ...

随机推荐

  1. MovieReview—Wile Hunter(荒野猎人)

     Faith is Power         Faith is power, this sentence is not wrong. Find your own beliefs, and strug ...

  2. cookie存验证码时间,时间没走完不能再次点击

    <script> var balanceSeconds=getcookie('Num'); console.log(balanceSeconds) var timer; var isCli ...

  3. UVA 1599, POJ 3092 Ideal Path 理想路径 (逆向BFS跑层次图)

    大体思路是从终点反向做一次BFS得到一个层次图,然后从起点开始依次向更小的层跑,跑的时候选则字典序最小的,由于可能有多个满足条件的点,所以要把这层满足条件的点保存起来,在跑下一层.跑完一层就会得到这层 ...

  4. codeforce Gym 100500I Hall of Fame (水)

    题意:统计一些串中,字母的出现频率,不分大小写,找出现频率最高5个字符(相同频率优先取字典序大的),把他们的对应的值加起来判断以下是否大于62. 没出现的不算. #include<cstdio& ...

  5. java sql database相关收集

    1 java prepareStatement http://www.importnew.com/5006.html 2 java ENGINE=InnoDB的使用 http://www.cnblog ...

  6. ubuntu k8s 命令补全

    apt install bash-completion // locate bash_completion source /usr/share/bash-completion/bash_complet ...

  7. 如何将oracle查询的结果传输给变量

    如何将oracle查询的结果传输给变量 1. sqlplus查询时的变量设置 set echo off; #控制start命令不列出命令文件中的每一命令 set feedback off; #显示由查 ...

  8. cocos2d-x的基本动作2

    1.基本动作 Cocos2d提供的基本动作:瞬时动作.延时动作.运作速度. 瞬时动作:就是不需要时间,马上就完成的动作.瞬时动作的共同基类是 InstantAction. Cocos2d提供以下瞬时动 ...

  9. ReactiveCocoa入门-part1

    作为一个iOS开发者,你写的每一行代码几乎都是在响应某个事件,例如按钮的点击,收到网络消息,属性的变化(通过KVO)或者用户位置的变化(通过CoreLocation).但是这些事件都用不同的方式来处理 ...

  10. UVa 12171 题解

    英文题面不怎么友好,大家还是自行通过紫书了解题面吧... 解题思路: 1. 面对500 ^ 3的数据范围,我们需要先用离散化解决掉爆空间的问题. 2. 由于我们要求的总体积包括内空部分的体积,我们可以 ...