bzoj 4275 Badania naukowe —— DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4275
枚举 \( C \) 在 \( A \) 和 \( B \) 中的位置,然后取它前后的最长子序列;
\( n^2 \) DP即可,呵呵。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const xn=;
int n,m,l,a[xn],b[xn],c[xn],f[xn][xn],g[xn][xn],pa[xn],pb[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
int main()
{
n=rd(); for(int i=;i<=n;i++)a[i]=rd();
m=rd(); for(int i=;i<=m;i++)b[i]=rd();
l=rd(); for(int i=;i<=l;i++)c[i]=rd();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
f[i][j]=max(f[i-][j],f[i][j-]);
if(a[i]==b[j])f[i][j]=max(f[i][j],f[i-][j-]+);
}
if(l==){printf("%d\n",f[n][m]); return ;}//
for(int i=n;i;i--)
for(int j=m;j;j--)
{
g[i][j]=max(g[i+][j],g[i][j+]);
if(a[i]==b[j])g[i][j]=max(g[i][j],g[i+][j+]+);
}
memset(pa,-,sizeof pa);
for(int i=;i<=n;i++)
for(int j=i,k=l;j;j--)
{
if(a[j]==c[k])k--;
if(k==){pa[i]=j; break;}
}
memset(pb,-,sizeof pb);
for(int i=;i<=m;i++)
for(int j=i,k=l;j;j--)
{
if(b[j]==c[k])k--;
if(k==){pb[i]=j; break;}
}
int ans=-;
for(int i=;i<=n;i++)
if(pa[i]!=-)
for(int j=;j<=m;j++)
if(pb[j]!=-)ans=max(ans,f[pa[i]-][pb[j]-]+g[i+][j+]);
if(ans==-)puts("-1");//
else printf("%d\n",ans+l);
return ;
}
bzoj 4275 Badania naukowe —— DP的更多相关文章
- 【BZOJ4275】[ONTAK2015]Badania naukowe DP
[BZOJ4275][ONTAK2015]Badania naukowe Description 给定三个数字串A,B,C,请找到一个A,B的最长公共子序列,满足C是该子序列的子串. Input 第一 ...
- [BZOJ 3791] 作业 【DP】
题目链接:BZOJ - 3791 题目分析 一个性质:将一个序列染色 k 次,每次染连续的一段,最多将序列染成 2k-1 段不同的颜色. 那么就可以 DP 了,f[i][j][0|1] 表示到第 i ...
- [BZOJ 2165] 大楼 【DP + 倍增 + 二进制】
题目链接:BZOJ - 2165 题目分析: 这道题我读了题之后就想不出来怎么做,题解也找不到,于是就请教了黄学长,黄学长立刻秒掉了这道题,然后我再看他的题解才写出来..Orz 使用 DP + 倍增 ...
- BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)
BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...
- BZOJ 4380 [POI2015]Myjnie | DP
链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...
- BZOJ.5311.贞鱼(DP 决策单调)
题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...
- 【BZOJ 3090】 树形DP
3090: Coci2009 [podjela] Description 有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.每个农民初始时获得 X 的钱.每一次操作, 一个农 ...
- bzoj 1030 fail树dp
dp[i][j][0]代表当前匹配到i号点走了j步且没到过单词节点,1代表到过,直接转移. #include<iostream> #include<cstdio> #inclu ...
- BZOJ 1831 & 就是一个DP....
题意: 比如说,4 2 1 3 3里面包含了5个逆序对:(4, 2), (4, 1), (4, 3), (4, 3), (2, 1). 可惜的是,由于年代久远,这些数字里有一部分已经模糊不清了,为了方 ...
随机推荐
- 基于UML的需求分析和系统设计个人体会
阅读了http://www.uml.org.cn/oobject/201405123.asp文章之后,对使用UML进行系统的需求分析和设计有了一个基础的理解.在此做一下整理. 1.项目开始阶段 项 ...
- ss请cc来家里钓鱼,鱼塘可划分为n*m的格子,每个格子有不同的概率钓上鱼,cc一直在坐标(x,y)的格子钓鱼,而ss每分钟随机钓一个格子。问t分钟后他们谁至少钓到一条鱼的概率大?为多少?
include "stdafx.h" #include<iostream> #include<vector> #include<math.h> ...
- 【WPF学习笔记】之如何保存画面上新建的数据到数据库中并且删除画面上的数据和数据库的数据:动画系列之(五)
...... 承接系列四后续: 首先,我要在用户控件2中添加“保存”,“删除”按钮. XAML代码: <UserControl x:Class="User.uc_item" ...
- SSH 使用密钥登录并禁止口令登录
小结:修改下sshd配置文件,把公钥传上去就好了 先生成公钥和私钥,默认在/root/.ssh/目录,可以先看一下有没有这个目录. 生成公钥后,以后其它服务器也都可以复用这个公钥 最好生成时输入密码! ...
- 漫反射和Lambert模型
粗糙的物体表面向各个方向等强度地反射光,这种等同地向各个方向散射的现象称为光的漫反射(diffuse reflection).产生光的漫反射现象的物体表面称为理想漫反射体,也称为朗伯(Lambert) ...
- Yii的权限管理rbac
1.首先我们要在配置文件的组件(component)里面配置一下 Rbac 在对应项目下的config/main.php或者config/main-local.php下添加 'authManager' ...
- python 基础 4.1 函数的参数
#/usr/bin/python #coding=utf-8 #@Time :2017/10/24 9:09 #@Auther :liuzhenchuan #@File :函数的参数.py # ...
- 使用 Django1.11搭建blog项目
使用Django搭建blog项目 简单设置: http://blog.csdn.net/w_e_i_/article/details/70761604 模板渲染: http://blog.csdn.n ...
- 九度OJ 1063:整数和 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3456 解决:2254 题目描述: 编写程序,读入一个整数N. 若N为非负数,则计算N到2N之间的整数和: 若N为一个负数,则求2N到N之间 ...
- 我的Android进阶之旅------>Android使用AlarmManager全局定时器实现定时更换壁纸
该DEMO将会通过AlarmManager来周期的调用ChangeService,从而让系统实现定时更换壁纸的功能. 更换壁纸的API为android.app.WallpaperManager,它提供 ...