题目描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 …

3/1 3/2 3/3 …

4/1 4/2 …

5/1 …

… 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入输出格式

输入格式:

整数N(1≤N≤10000000)

输出格式:

表中的第N项

输入输出样例

输入样例#1: 复制

7
输出样例#1: 复制

1/4

【分析】:

移动方向有四种:

1.向右移动。

2.向下移动。

3.向左下方移动。

4.向右上方移动。

那么此题可采用模拟的方法。

在每个转折点找一找规律,可以发现

  • 当分母为偶数分子为1时向下走

  • 当分子为奇数分母为1时向上走

  • 若分子分母某一个为1但另一个不符合以上情况时另一个就+1

Z型的循环加几个if就好了,用两个变量做分子和分母

【代码】:

#include<bits/stdc++.h>
using namespace std;
#define eps 1e-6 int main()
{
int n;
cin>>n;
int x = , y = ;
for(int i=; i<n; i++)
{
if((y%==) && x==) y++; //上奇数边界
else if((x%)== && y==) x++; //左偶数边界
else if((x+y)%==) x++,y--; //奇数斜线
else if((x+y)%==) x--,y++; //偶数斜线
}
cout<<x<<"/"<<y<<endl;;
return ;
}

模拟

【总结】:和HDU幻方找规律、蛇皮矩阵有点像,S走位很强,就是分开看分子分母坐标怎么变。

洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】的更多相关文章

  1. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  2. 洛谷——P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  3. 洛谷P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  4. 洛谷 P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  5. [NOIP1999] 提高组 洛谷P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  6. java实现 洛谷 P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...

  7. (模拟) codeVs1083 && 洛谷P1014 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...

  8. (水题)洛谷 - P1014 - Cantor表

    https://www.luogu.org/problemnew/show/P1014 很显然同一对角线的和是相等的.我们求出前缀和然后二分. 最后注意奇偶的顺序是相反的. #include<b ...

  9. 洛谷P1482 Cantor表(升级版) 题解

    题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...

随机推荐

  1. linux 查看CPU内存 网络 流量 磁盘 IO

    使用vmstat命令来察看系统资源情况 在命令行方式下,如何查看CPU.内存的使用情况,网络流量和磁盘I/O? Q: 在命令行方式下,如何查看CPU.内存的使用情况,网络流量和磁盘I/O? A: 在命 ...

  2. Hive UDAF开发详解

    说明 这篇文章是来自Hadoop Hive UDAF Tutorial - Extending Hive with Aggregation Functions:的不严格翻译,因为翻译的文章示例写得比较 ...

  3. OpenCV学习笔记(一) 环境配置

    Visual Studio 2010 VS2010对应的OpenCV的lib文件(build\x86\vc10\lib)分为debug模式和release模式两种:debug模式牺牲速度,但能提供更多 ...

  4. U10783 名字被和谐了

    U10783 名字被和谐了 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约数也是b的约数,我们称g是a.b的一个公约数. 众所周知,a.b ...

  5. kettle Spoon.bat闪退解决办法!

    1.Java环境配置问题: java_home:D:\Program Files\Java\jdk1.7.0_25(安装jdk路径) classpath:.;%java_home%\lib\dt.ja ...

  6. 【Letter Combinations of a Phone Number】cpp

    题目: Given a digit string, return all possible letter combinations that the number could represent. A ...

  7. 【Luogu P2781】 传教

    这题是可以用线段树做的. 虽然$n\leq 10^9$ 可以发现,真正需要用到的节点很少,故动态开点,只有需要用到的时候才新建节点. 这里我在下放标记的时候新建节点,因为每操作/查询一个节点都需要先下 ...

  8. centos开机启动项设置命令:chkconfig

    在CentOS或者RedHat其他系统下,如果是后面安装的服务,如httpd.mysqld.postfix等,安装后系统默认不会自动启动的.就算手动执行/etc/init.d/mysqld start ...

  9. poj1111(单身快乐)

                                                                                                         ...

  10. 菜鸟之路——机器学习之线性回归个人理解及Python实现

    这一节很简单,都是高中讲过的东西 简单线性回归:y=b0+b1x+ε.b1=(Σ(xi-x–)(yi-y–))/Σ(xi-x–)ˆ2       b0=y--b1x-    其中ε取 为均值为0的正态 ...