[bzoj2301: [HAOI2011]Problem b] 乞讨
</pre><pre code_snippet_id="507886" snippet_file_name="blog_20141104_2_5383199" name="code" class="cpp">#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#include <cstdio>
#include <cstring>
using namespace std; typedef long long LL; inline int read(){
int x = 0,f = 1; char ch = getchar();
while(ch < '0'||ch > '9'){if(ch == '-')f=-1;ch = getchar();}
while(ch >= '0'&&ch <= '9'){x = x * 10 + ch -'0';ch = getchar();}
return x*f;
} ////////////////////////////////////////////////////////////////// /*
算法:容斥原理 + 分块
题目:
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,
且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 */ const int MAXN = 50000 + 10;
int tot;
LL mu[MAXN+1],sum[MAXN+1],pri[MAXN+1];
bool mark[MAXN]; void get(){
mu[1] = 1;
for(int i = 2;i <= MAXN;++i){
if(!mark[i])pri[tot++] = i,mu[i] = -1;
for(int j = 0;j < tot&&i*pri[j] <= MAXN;++j){
mark[i*pri[j]] = 1;
if(i % pri[j]==0){mu[i*pri[j]] = 0; break;}
else mu[i*pri[j]] = -mu[i];
}
} for(int i = 1;i <= MAXN;++i) //预处理前缀
sum[i] = sum[i-1] + mu[i];
} int cal(int n,int m){
if(n > m) swap(n,m);
LL ans = 0,pos;
for(LL i = 1;i <= n;i = pos + 1){
pos = min(n/(n/i),m/(m/i)); //分块
ans += (sum[pos] - sum[i-1]) * (n/i) * (m/i);
}
return ans;
} int main()
{
get();
int T = read();
while(T--){
int a = read(),b = read(),c = read(),d = read(),k = read();
LL ans = cal(b/k,d/k);
ans -= cal((a-1)/k,d/k);
ans -= cal(b/k,(c-1)/k);
ans += cal((a-1)/k,(c-1)/k);
printf("%lld\n",ans);
}
return 0;
}
版权声明:本文博主原创文章。博客,未经同意不得转载。
[bzoj2301: [HAOI2011]Problem b] 乞讨的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...
- bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...
- BZOJ2301 [HAOI2011]Problem b
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- bzoj2301: [HAOI2011]Problem b懵逼乌斯反演
属于结果的和好求但是结果不好求的题 (轻易能得到以k的倍数为最大公约数的对数,但是不好直接求k) 所以一波反演结束 其实反演的时候完全没有反演的感觉,就是不停地恒等变形 算是懵逼乌斯反演最简单的例题 ...
- [luogu2522][bzoj2301][HAOI2011]Problem b【莫比乌斯反演】
传送门:https://www.luogu.org/problemnew/show/P2522 题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...
- 题解【bzoj2301 [HAOI2011]Problem b】
Description 求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd ...
随机推荐
- (转)25个增强iOS应用程序性能的提示和技巧--初级篇
在开发iOS应用程序时,让程序具有良好的性能是非常关键的.这也是用户所期望的,如果你的程序运行迟钝或缓慢,会招致用户的差评.然而由于iOS设备的局限性,有时候要想获得良好的性能,是很困难的.在开发过程 ...
- 一个用 Cumulative Penalty 培训 L1 正规 Log-linear 型号随机梯度下降
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之中的一个.其训练常採用最大似然准则.且为防止过拟合,往往在目标函数中增加(能够产生稀疏性的) L1 正则.但对于 ...
- VB中DateDiff 函数解释
VB中DateDiff 函数使用方法 DateDiff (interval, Date1 , Date2[,firstweekofyear[,firstweekofyear]]) 返回一个Varia ...
- boost::asio译文
Christopher Kohlhoff Copyright © 2003-2012 Christopher M. Kohlhoff 以Boost1.0的软件授权进行发布(见附带的LICENS ...
- StackOverflow程序员推荐:每个程序员都应读的30本书
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本,你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西.” 很多程序员响应,他们在推荐时也写下自己的评语. ...
- JS软键盘代码
页面代码如下: <HTML> <HEAD> <TITLE>一个不错的js软键盘代码</TITLE> <meta http-equiv=" ...
- JS滚轮事件(mousewheel/DOMMouseScroll)了解
已经没有了小学生时代过目不忘的记忆力了,很多自己折腾的东西.接触的东西,短短1年之后就全然不记得了.比方说,完全记不得获取元素与页面距离的方法(getBoundingClientRect),或者是不记 ...
- 1203.4——循环语句 之 for
for循环的一般形式为:for(表达式1; 表达式2; 表达式3){ 语句块} 它的执行过程如下:1) 先求解表达式1. 2) 求解表达式2,若其值为真(非0),则执行循环体,否则结束循环. 3 ...
- MVC 模型、视图、控制及其单入口文件的mvc的工作原理
什么是mvc,mvc就是模型视图控制,模型就是model,在项目中负责数据库相关的操作,视图就是view ,负责页面的展示和数据的展示,控制就是controller ,负责中间的逻辑转换,数 ...
- linux crontab运行
Linux在相应用户下,用crontab -l 命令可以查看该用户定时执行的任务. 1- $>crontab -l 无内容. 则表示没有指定用户执行对应用户下的crontab文件. 2- $&g ...