(Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
题目大意:
分数 49/98 是一个奇怪的分数:当一个菜鸟数学家试图对其进行简化时,他可能会错误地可以认为通过将分子和分母上的9同时去除得到 49/98 = 4/8。但他得到的结果却是正确的。
我们将30/50 = 3/5这样的分数作为普通个例。
一共有四个这样的非普通分数,其值小于1,并且包括分子和分母都包括2位数。 如果将这四个分数的乘积约分到最简式,分母是多少?
//(Problem 33)Digit canceling fractions
// Completed on Thu, 25 Jul 2013, 17:47
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
void swap(int *a, int *b)
{
int t;
t=*a;
*a=*b;
*b=t;
} int gcd(int a, int b)
{
int r;
if (a < b)
swap(&a,&b);
if (!b)
return a;
while ((r = a % b) != ) {
a = b;
b = r;
}
return b;
} void find()
{
int i;
int M,N;
M=N=;
for(i=; i<; i++)
{
for(int j=i+; j<; j++)
{
int t=gcd(i,j);
if(t== || i/t> || j/t> || i%!=j/)
continue;
else
{
int a=i/,b=j%;
if(a/gcd(a,b)==i/t && b/gcd(a,b)==j/t)
{
M*=i/t;
N*=j/t;
}
}
}
}
printf("%d\n",N/gcd(M,N));
} int main()
{
find();
return ;
}
|
Answer:
|
100 |
(Problem 33)Digit canceling fractions的更多相关文章
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 16)Power digit sum
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
随机推荐
- php 接口示例
php 接口示例: public function dev(){ $m=new Model('machine_info'); $ip=$_GET['ip']; echo $ip; //$arr=$m- ...
- Android Studio 代码混淆
新建一个项目,Android Studio默认关闭代码混淆开关,在build.gradle文件中,如下图所示的minifyEnabled 开关,因此如果需要混淆代码,需将false改为true,然后在 ...
- jquery简单判断PC端还是移动端
$(function(){ if (!navigator.userAgent.match(/mobile/i)) { //PC端 }else{ //移动端 } })
- hbase0.96 put流程 源码分析
无意间多瞄了一眼hbase0.98的代码,想复习下put流程.发现htable里面已经找不到processBatchOfPuts()奇怪了.看了半天原来变化还真大事实上0.96就没这个了,于是又搞了个 ...
- 全国三级城市联动 js版
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- SqlCacheDependency的使用
最近项目需要几秒就获取一次数据,查数据库服务器压力会很大,因此用缓存技术来缓解服务器压力. 使用SqlCacheDependency采用轮询的方式来获取缓存,SqlDependency查询通知的方式来 ...
- Java 网络编程(五) 使用TCP/IP的套接字(Socket)进行通信
链接地址:http://www.cnblogs.com/mengdd/archive/2013/03/10/2952616.html 使用TCP/IP的套接字(Socket)进行通信 套接字Socke ...
- 腾讯云部署Flask应用
由于新浪云现在不免费了.而且云豆也用完了.所以去腾讯云申请了个学生云主机,一元一个月. 不过部署开发环境还是有点麻烦的,搞了好几天,终于部署成功了! 下面说部署过程: 我云主机用的是 Ubuntu 1 ...
- 设计模式(十一)代理模式Proxy(结构型)
1.概述 因为某个对象消耗太多资源,而且你的代码并不是每个逻辑路径都需要此对象, 你曾有过延迟创建对象的想法吗 ( if和else就是不同的两条逻辑路径) ? 你有想过限制访问某个对象,也就是说,提供 ...
- Tomcat 启动 Debug模式
如果debug启动遇到如下错误: ERROR: transport error 202: gethostbyname: unknown host ERROR: JDWP Transport dt_so ...