(Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
题目大意:
分数 49/98 是一个奇怪的分数:当一个菜鸟数学家试图对其进行简化时,他可能会错误地可以认为通过将分子和分母上的9同时去除得到 49/98 = 4/8。但他得到的结果却是正确的。
我们将30/50 = 3/5这样的分数作为普通个例。
一共有四个这样的非普通分数,其值小于1,并且包括分子和分母都包括2位数。 如果将这四个分数的乘积约分到最简式,分母是多少?
//(Problem 33)Digit canceling fractions
// Completed on Thu, 25 Jul 2013, 17:47
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
void swap(int *a, int *b)
{
int t;
t=*a;
*a=*b;
*b=t;
} int gcd(int a, int b)
{
int r;
if (a < b)
swap(&a,&b);
if (!b)
return a;
while ((r = a % b) != ) {
a = b;
b = r;
}
return b;
} void find()
{
int i;
int M,N;
M=N=;
for(i=; i<; i++)
{
for(int j=i+; j<; j++)
{
int t=gcd(i,j);
if(t== || i/t> || j/t> || i%!=j/)
continue;
else
{
int a=i/,b=j%;
if(a/gcd(a,b)==i/t && b/gcd(a,b)==j/t)
{
M*=i/t;
N*=j/t;
}
}
}
}
printf("%d\n",N/gcd(M,N));
} int main()
{
find();
return ;
}
|
Answer:
|
100 |
(Problem 33)Digit canceling fractions的更多相关文章
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 16)Power digit sum
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of th ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
随机推荐
- cocos2dx CCControlSwitch
CCControlSwitch也是extension中的控件,本身比较简单,直接上例子 // on "init" you need to initialize your insta ...
- 动态规划以及在leetcode中的应用
之前只是知道动态规划是通过组合子问题来解决原问题的,但是如何分析,如何应用一直都是一头雾水.最近在leetcode中发现有好几道题都可以用动态规划方法进行解决,就此做下笔录. 动态规划:应用于子问题重 ...
- mybatis-generator生成model和dao层代码
.建立文件夹myibatisGen 2.下载mybatis-generator-core-1.3.1.jar或者其它版本的jar包,到myibatisGen文件夹下 3.为生成代码建立配置文件“gen ...
- Java 程序中的多线程
概述 synchronized 关键字,代表这个方法加锁,相当于不管哪一个线程(例如线程A),运行到这个方法时,都要检查有没有其它线程B(或者C. D等)正在用这个方法,有的话要等正在使用synch ...
- POJ 3169 Layout (图论-差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6574 Accepted: 3177 Descriptio ...
- WCF 双工通信
注释:本学习是参考Artech大神的资料: 在WCF 实现双工通信 在这里我就不介绍双工通信的概念了,我写博客的目的是检测自己掌握情况,看我wcf通信后,觉得纸上得来终觉浅,绝知此事要躬行. 我使用的 ...
- .NET 多语言支持解决方案 (转)
asp.net 2.0中的App_GlobalResources可以用来解决本地化的问题,程序会根据浏览器的语言首选项自动判断显示出本地化的界面. 首先在App_GlobalResources新建re ...
- SQL(Oracle)日常使用与不常使用函数的汇总
--日常使用的sql语句和oracle语句,有些相对使用的频率比较高,收藏起来还是比较值得的 -- 绝对值 SQL:) value Oracle:) value from dual -- 2.取整(大 ...
- spring jar包冲突
在用Spring+Hibernate做项目时候遇到java.lang.NoSuchMethodError: org.objectweb.asm.ClassVisitor.visit 网上查得答案 环境 ...
- 【转】OpenCV与CxImage转换(IplImage)、IplImage QImage Mat 格式互转
最近由于在项目中用到了Opencv库,但是为了更好的显示图像还是使用了Cximage库,它可以快捷地存取.显示.转换各种图像.Opencv库用于高级图像处理与识别.为了使Cximage图像与Openc ...