HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))
继续畅通工程
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10765 Accepted Submission(s): 4704
当N为0时输入结束。
1 2 1 0
1 3 2 0
2 3 4 0
3
1 2 1 0
1 3 2 0
2 3 4 1
3
1 2 1 0
1 3 2 1
2 3 4 1
0
1
0
这道题虽然是一道模板题,但是有一点要注意:
不能使用 Scanner sc = new Scanner(new BufferedInputStream(System.in)); 和
System.out.println();
否则会超时;
推荐使用: BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); 和
PrintWriter pw=new PrintWriter(new OutputStreamWriter(System.out),true);
克鲁斯卡尔
import java.io.*;
import java.util.*;
public class Main {
public int n,m,sum;
public ArrayList<kr> ay=new ArrayList<kr>();;
public int pattern[];
PrintWriter pw;
public static void main(String[] args) throws IOException{
new Main().work();
}
public void work() throws IOException{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
pw=new PrintWriter(new OutputStreamWriter(System.out),true);
n=Integer.parseInt(bu.readLine());
while(n!=0){
m=(n*(n-1))>>1;
ay.clear();
sum=0;
for(int i=0;i<m;i++){
String str[]=bu.readLine().split(" ");
int a=Integer.parseInt(str[0]);
int b=Integer.parseInt(str[1]);
int c=Integer.parseInt(str[2]);
int d=Integer.parseInt(str[3]);
if(d==1)
c=0;
kr k=new kr(a,b,c);
ay.add(k);
}
Collections.sort(ay);
Kruskral();
pw.println(sum);
n=Integer.parseInt(bu.readLine());
}
}
public void Kruskral(){
pattern=new int[n+1];
for(int i=1;i<=n;i++){
pattern[i]=i;
}
for(int i=0;i<ay.size();i++){
union(ay.get(i).a,ay.get(i).b,ay.get(i).c);
}
}
public void union(int a,int b,int c){
int aa=find(a);
int bb=find(b);
if(aa==bb)
return;
if(aa>bb){
pattern[bb]=aa;
sum+=c;
//pw.println(sum);
}
else{
pattern[aa]=bb;
sum+=c;
}
}
public int find(int x){
int k,r,s;
r=x;
while(r!=pattern[r]){
r=pattern[r];
}
k=x;
while(k!=r){
s=pattern[k];
pattern[k]=r;
k=s;
}
return r;
}
}
class kr implements Comparable<kr>{
int a;
int b;
int c;
kr(int a,int b,int c){
this.a=a;
this.b=b;
this.c=c;
}
public int compareTo(kr o) {
return this.c>o.c?1:-1;
}
}
普利姆算法
import java.io.*;
import java.util.*; public class Main {
public int MAX=2000000;
public int map[][];
public int n,m;
PrintWriter pw;
public static void main(String args[]) throws IOException{
new Main().work();
}
public void work() throws IOException{
//Scanner sc=new Scanner(new BufferedInputStream(System.in));
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
pw=new PrintWriter(new OutputStreamWriter(System.out),true);
n=Integer.parseInt(bu.readLine());
while(n!=0){
m=(n*(n-1))>>1;
map=new int[n+1][n+1];
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
map[i][j]=MAX;
}
} for(int i=1;i<=m;i++){
String str[]=bu.readLine().split(" ");
int a=Integer.parseInt(str[0]);
int b=Integer.parseInt(str[1]);
int c=Integer.parseInt(str[2]);
int d=Integer.parseInt(str[3]);
if(d==1){
c=0;
}
if(map[a][b]>c)
map[a][b]=map[b][a]=c;
}
getDistance();
n=Integer.parseInt(bu.readLine());
}
}
////Prim(普里姆算法)
public void getDistance(){
int k=0,sum=0;
int dis[]=new int[n+1];
int mark[]=new int[n+1];
for(int i=2;i<=n;i++){
dis[i]=map[1][i];//初始化起点到其他点之间的距离
}
mark[1]=1;
for(int i=1;i<n;i++){
int min=MAX;
// 每次循环寻找的最短的边
for(int j=2;j<=n;j++){
if(mark[j]==0&&dis[j]<min){
min=dis[j];
k=j;
}
}
if(min==MAX) break;
mark[k]=1;
sum+=dis[k];
//到一个新的点,从新计算到其他点之间的距离
for(int j=2;j<=n;j++){
if(mark[j]==0&&dis[j]>map[k][j])
dis[j]=map[k][j];
}
}
pw.println(sum);
}
}
HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))的更多相关文章
- HDU 1879 继续畅通工程(Prim||Kruscal模板题)
原题链接 Prim(点归并) //异或运算:相同为假,不同为真 #include<cstdio> #include<algorithm> #define maxn 105 us ...
- hdu 1879 继续畅通工程
/************************************************************************/ /* hdu 1879 继续畅通工程 Time L ...
- 经典问题----最小生成树(prim普里姆贪心算法)
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...
- 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...
- 普里姆算法(Prim)
概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权 ...
- 查找最小生成树:普里姆算法算法(Prim)算法
一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...
- ACM第四站————最小生成树(普里姆算法)
对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成 ...
- MST最小生成树及Prim普鲁姆算法
MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...
- 图->连通性->最小生成树(普里姆算法)
文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...
随机推荐
- SWOT自我分析
个人信息: 大三学生 二本大学 软件工程专业 一:SWOT自我分析 Strenghs(优势): 1.有着良好的作息习惯,坚持锻炼 2.专注力强,能沉下心来学习 3.有着强烈的危机意思,明白不仅则退的道 ...
- 网易云课堂_C语言程序设计进阶_第二周:指针:取地址运算和指针、使用指针、指针与数组、指针与函数、指针与const、指针运算、动态内存分配_2信号报告
2 信号报告(5分) 题目内容: 无线电台的RS制信号报告是由三两个部分组成的: R(Readability) 信号可辨度即清晰度. S(Strength) 信号强度即大小. 其中R位于报告第一 ...
- 新手求大神,有其他swit-case的思路写这个程序么?
两个程序: switch-case与if-else if的区别相同点:可以实现多分支结构;不同点:switch:一般只能用于等值比较.(可以进行范围运算???---学会用switch计算范围出炉的思路 ...
- T-SQL变量
T-SQL中变量分为全局变量和局部变量,分别使用@@和@前缀. 全局变量 常用的全局变量有@@VERSION .@@IDENTITY.@@ERROR.@@ROWCOUNT 用法 select @@VE ...
- SQL Server数据库---》增删查改
***数据的插入:(增) insert into 表名(字段列表) values(值列表) 如果不写字段列表就要为表添加全部的列数据 其实into也可以省略 每次只能插入一条数据 1.如果字段可以为n ...
- MariaDB忘记root密码
在MariaDB配置文件/etc/my.cnf [mysqld]中加入skip-grant-tables一行: [Richard@localhost ~]$ sudo vi /etc/my.cnf[ ...
- org.springframework.transaction.CannotCreateTransactionException: Could not open Hibernate Session
出错原因很简单:数据库服务没开,自然就打不开Session了.
- U3D学习使用笔记(三)
1.对动画进行播放和暂停(从初始位置) (1).老版动画系统Animation 暂停 an["Take 001"].time = 0f; an["Take 001&quo ...
- leetcode Search in Rotated Sorted Array python
#Suppose a sorted array is rotated at some pivot unknown to you beforehand. #(i.e., 0 1 2 4 5 6 7 ...
- Java学习之javassist
1.读取和输出字节码 ClassPool pool = ClassPool.getDefault(); //会从classpath中查询该类 CtClass cc = pool.get("t ...