BZOJ 2741 【FOTILE模拟赛】L(可持久化trie)
http://www.lydsy.com/JudgeOnline/problem.php?id=2741
思路:我们先将a变成a的异或前缀,这样问题就变成了,在l-1到r区间内,找出i,j令a[i]^a[j]最大。
假如i是固定的,我们可以建一个可持久化trie,在l-1到r区间内贪心寻找最优,但是这题i和j都不是固定的,如果暴力枚举i,那时间复杂度最坏是m*n*logn。
因此我们考虑这样:将n个数字分块,预处理出数组f[i][j],代表从第i块的开头作为左端点固定,j为右端点,这里面能产生的最优异或和,可以得到f[i][j]=max(f[i][j-1],query(root[start[i]-1],root[j],a[j])),这样转移,就能在接近O(n)的时间复杂度内预处理出数组,这样,对于m个询问中的每个l,r,假如l属于块i,那么我们先让ans=f[i+1][r],这样剩下我们只需要暴力解决l所属块i内的答案,这个求法就是上面说的固定点i,在root[l-1],root[r]区间内贪心查找,更新答案即可,还有这题,在强制在线的时候lastans+x和lastans+y可能会爆int。
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define ll long long
int n,m,a[],b[],ch[][],sz,block_num,block_size,size[];
int f[][],root[];
int read(){
char ch=getchar();int t=,f=;
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int &k,int kk,int v,int dep){
k=++sz;
size[k]=size[kk]+;
if (dep==-) return;
ch[k][]=ch[kk][],ch[k][]=ch[kk][];
if (v&(<<dep)) insert(ch[k][],ch[kk][],v,dep-);
else insert(ch[k][],ch[kk][],v,dep-);
}
int query(int x,int y,int v){
int res=;
for (int i=;i>=;i--){
int t=((v&(<<i))>);
if (size[ch[y][t^]]-size[ch[x][t^]]>){
res|=(<<i);
y=ch[y][t^];
x=ch[x][t^];
}else{
y=ch[y][t];
x=ch[x][t];
}
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
block_size=(int)sqrt(n);
block_num=n/block_size+(n%block_size!=);
for (int i=;i<=n;i++) {scanf("%d",&a[i]);a[i]^=a[i-];}
int ans=;
for (int i=;i<=n;i++) insert(root[i],root[i-],a[i],);
for (int i=;i<=block_num;i++)
for (int j=(i-)*block_size+;j<=n;j++){
f[i][j]=std::max(f[i][j-],query(root[(i-)*block_size],root[j],a[j]));
if (i==) f[i][j]=std::max(f[i][j],a[j]);
}
while (m--){
int x,y;
scanf("%d%d",&x,&y);
x%=n;y%=n;
x=(x+(ans%n))%n+;
y=(y+(ans%n))%n+;
if (x>y) std::swap(x,y);
x--;
int num=x/block_size+(x%block_size!=);
ans=;
int l=num*block_size+;
if (l<=y) ans=f[num+][y];
l=std::min(l,y);
for (int j=x;j<l;j++)
ans=std::max(ans,query(root[x],root[y],a[j]));
printf("%d\n",ans);
}
}
BZOJ 2741 【FOTILE模拟赛】L(可持久化trie)的更多相关文章
- BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)
题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...
- bzoj 2741 [FOTILE模拟赛] L
Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...
- 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块
题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...
- 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)
显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...
- 【bzoj2741】[FOTILE模拟赛] L
Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...
- BZOJ2741:[FOTILE模拟赛]L
Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...
- bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie
2741: [FOTILE模拟赛]L Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 1116 Solved: 292[Submit][Status] ...
- 【BZOJ】【2741】【FOTILE模拟赛】L
可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成 ...
- 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树
[BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...
随机推荐
- ajax get/post
xmlhttp.open("POST", url, true); xmlhttp.setRequestHeader("Content-Type", " ...
- Linux下用Mytop监控MySQL资源
https://www.centos.bz/2011/11/linux-install-perl-dbd-mysql/ http://blog.csdn.net/rital/article/detai ...
- A51汇编器的解释
A51汇编器是运行于IBM PC系列及其兼容机上的交叉汇编软件,其主要功能是将MCS-51系列单片机汇编语言源程序翻译成符合Intel目标文件格式的可再定位的目标代码,经过L51连接器的连接和装配,产 ...
- WPF利用Image实现图片按钮
之前有一篇文章也是采用了Image实现的图片按钮,不过时间太久远了,忘记了地址.好吧,这里我进行了进一步的改进,原来的文章中需要设置4张图片,分别为可用时,鼠标悬浮时,按钮按下时,按钮不可用时的图片, ...
- thinkpad t530 centos 6.4 有线网卡 设置
由于新装的系统没有安装网卡驱动,各大厂商的标准又不一样,有的电脑在linux下不用安装无线网卡驱动,而很不幸,我的电脑是ret的网卡,只能自行安装,在安装无线网卡的过程中使用到了chkconfig的命 ...
- Textarea - 百度富文本编辑器插件UEditor
UEditor各种实例演示 Ueditor 是百度推出的一款开源在线 HTML 编辑器. 主要特点: 轻量级:代码精简,加载迅速. 定制化:全新的分层理念,满足多元化的需求.采用三层架构:1. 核心层 ...
- 【转】网络视频监控P2P解决方案
一.摘要 本文分析了日益增长的民用级别家庭和个人网络视频监控市场的需求特点,并给出了一种经济可行易于大规模部署的P2P解决方案. 由于篇幅有限,本文只给出了方案的思路,未对更深入的技术细节做详细的论述 ...
- CCA概述和安装
什么是CCA? 客户关怀加速器(CCA)为微软动态®CRM通过集中的客户信息从不同的系统在一个集成代理桌面促进剂的效率和有效性. CCA是一个參考应用,利用用户界面集成(UII)为微软Dynamics ...
- Oracle优化技术
1.基本原理 Oracle的日志:Oracle中为了提高硬盘写的效率,採用内存中数据缓冲区来保存数据,等到一定量或一定时间后才写到磁盘(DBWR). 这个时候假如断电之类的故障发生,数据缓冲区的数据将 ...
- django中的Model模型一:
在django的框架设计中采用了mtv模型,即Model,template,viewer Model相对于传统的三层或者mvc框架来说就相当对数据处理层,它主要负责与数据的交互,在使用django框架 ...