HDU 2254 奥运(数论+矩阵)
题目中文的不解释啊。
。。
须要注意的就是:离散数学中,有向图的邻接矩阵A表示全部点之间路径长度为1的路径数量,A^n则表示路径长度为n的路径数量。故须要求某两点在(A^t1)~(A^t2)的路径数量之和。
奥运
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2251 Accepted Submission(s): 572
比尔盖兹坐上鸟巢里,手里摇着小纸扇,看的不亦乐乎。被俺们健儿的顽强拼搏的精神深深的感动了。
反正我的钱也多的没地方放了,他对自己说,我自己也来举办一个奥运会。看谁的更火。
只是他的奥运会非常特别:
1 參加人员必须是中国人;
2 至少会加法运算(由于要计算本人获得的金牌数)
他知道中国有非常多的名胜古迹。他知道自己在t1 到 t2天内不可能把全部的地方都玩遍,所以他决定指定两个地方v1,v2,假设參赛员能计算出在t1到t2天(包含t1,t2)内从v1到v2共同拥有多少种走法(每条道路走须要花一天的时间,且不能在某个城市停留,且t1=0时的走法数为0),那么他就会获得对应数量的金牌,城市的总数<=30,两个城市间能够有多条道路
,每条都视为是不同的。
输入一个数字n表示有n条道路 0<n<10000
接下来n行每行读入两个数字 p1。p2 表示城市p1到p2有道路,并不表示p2到p1有道路 (0<=p1,p2<2^32)
输入一个数字k表示有k个參赛人员
接下来k行。每行读入四个数据v1,v2,t1,t2 (0<=t1,t2<10000)
6
1 2
1 3
2 3
3 2
3 1
2 1
3
1 2 0 0
1 2 1 100
4 8 3 50
0
1506
0
</pre><pre style="font-family: 'Courier New'; background-color: rgb(244, 251, 255);"><pre name="code" class="cpp">#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-10
///#define M 1000100
#define LL __int64
///#define LL long long
///#define INF 0x7ffffff
#define INF 0x3f3f3f3f
#define PI 3.1415926535898
#define zero(x) ((fabs(x)<eps)? 0:x) #define mod 2008 const int maxn = 210; using namespace std; struct matrix
{
int f[31][31];
};
matrix p[10001];
map<int, int>mp; matrix mul(matrix a, matrix b, int n)
{
matrix c;
memset(c.f, 0, sizeof(c.f));
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j];
c.f[i][j] %= mod;
}
}
return c;
} matrix pow_mod(matrix a, int b, int n)
{
matrix s;
memset(s.f, 0 , sizeof(s.f));
for(int i = 0; i < n; i++) s.f[i][i] = 1;
while(b)
{
if(b&1) s = mul(s, a, n);
a = mul(a, a, n);
b >>= 1;
}
return s;
} matrix Add(matrix a,matrix b, int n)
{
matrix c;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
c.f[i][j] = a.f[i][j]+b.f[i][j];
c.f[i][j] %= mod;
}
}
return c;
} int main()
{
int n, m;
while(scanf("%d",&n)!=EOF)
{
int u, v;
int ans = 0;
mp.clear();
memset(p[0].f, 0, sizeof(p[0].f));
for(int i = 0; i < n; i++)
{
scanf("%d %d",&u, &v);
if(mp.find(u) == mp.end()) mp[u] = ans++;
if(mp.find(v) == mp.end()) mp[v] = ans++;
p[0].f[mp[u]][mp[v]] ++;
} for(int i = 1; i < 10001; i++) p[i] = mul(p[i-1], p[0], ans);
scanf("%d",&m);
int t1, t2, v1, v2;
while(m--)
{
scanf("%d %d %d %d",&v1, &v2, &t1, &t2);
if(t1 > t2) swap(t1,t2);
if(mp.find(v1) == mp.end() || mp.find(v2) == mp.end() || t1 == 0 && t2 == 0)
{
puts("0");
continue;
}
int sum = 0; for(int i = t1-1; i < t2; i++)
{
if(i == -1) continue;
sum += p[i].f[mp[v1]][mp[v2]]%mod;
}
printf("%d\n",sum%mod);
///cout<<(sum%mod)<<endl;
}
}
return 0;
}
HDU 2254 奥运(数论+矩阵)的更多相关文章
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- hdu 2254 奥运
点击打开hdu 2254 思路: 矩阵乘法 分析: 1 题目给定一个有向图,要求t1-t2天内v1-v2的路径的个数 2 根据离散数学里面的可达矩阵的性质,我们知道一个有向图的邻接矩阵的前n次幂的和即 ...
- HDU 2254 奥运(矩阵+二分等比求和)
奥运 [题目链接]奥运 [题目类型]矩阵+二分等比求和 &题解: 首先离散化城市,之后就是矩阵快速幂了,但让求的是A^(t1)+A^(t1+1)+...+A^(t2),我先想的是打表,但时间真 ...
- HDU - 2254 奥运 (求等比数列和)
Description 北京迎来了第一个奥运会,我们的欢呼声响彻中国大地,所以今年的奥运金牌 day day up! 比尔盖兹坐上鸟巢里,手里摇着小纸扇,看的不亦乐乎,被俺们健儿的顽强拼搏的精神深深的 ...
- hdu 2254 奥运(邻接矩阵应用)
Problem Description 北京迎来了第一个奥运会,我们的欢呼声响彻中国大地,所以今年的奥运金牌 day day up! 比尔盖兹坐上鸟巢里,手里摇着小纸扇,看的不亦乐乎,被俺们健儿的顽强 ...
- hdu 2865 Polya计数+(矩阵 or 找规律 求C)
Birthday Toy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- HDU.1575 Tr A ( 矩阵快速幂)
HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- 【矩阵快速幂】之奥运 hdu 2254
1.城市的编号不是从0到n-1,而是随便的一个数字,需要离散化否则不能存相关信息 2.城市数不超过30,也就是说我的方法开矩阵不超过60,但是我残念的一开始以为最多可能有20000个不同城市 血 ...
随机推荐
- 震撼,强烈推荐 OrangeUI For FireMonkey
今天,高勇上传了一个演示rtx for kbmMW的android应用,我下载测试,被实际的效果给震惊了!万万想不到的,用OrangeUI做的一个List列表,数据通过远程查询,运行效果在我看来,达到 ...
- POJ 3579 Median(二分答案+Two pointers)
[题目链接] http://poj.org/problem?id=3579 [题目大意] 给出一个数列,求两两差值绝对值的中位数. [题解] 因为如果直接计算中位数的话,数量过于庞大,难以有效计算, ...
- POJ——放苹果
4:放苹果 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示) ...
- MSSQL 日期操作函数 总结
set ANSI_NULLS ON set QUOTED_IDENTIFIER ON go ALTER FUNCTION [dbo].[ufn_getDateOfWeek] (@Date Dateti ...
- LDA(latent dirichlet allocation)
1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量 $(0,0,...,0,1,0,... ...
- Freedur为什么会免费?
难道没人看看他们的官方站点吗? Freedur倒闭了...... 一个中国人,Chris Lee,作为Freedur的会计师,窃取了公司的银行帐号.并将Freedur的官方站点指向自己的空间.而且声称 ...
- JAVA装饰器模式
Java程序员们应该对java.io对不会陌生,因为java.io包采用了装饰器模式. 一.定义: Decorator装饰器,顾名思义,就是动态地给一个对象添加一些额外的职责,就好比为房子进行装修一样 ...
- Android之ActionBar学习
关于那个问题:是关于如何生成如下图所示之ActionBar效果: 其实就在官网上就有答案,自己疏忽再加上资料繁多.寻了许久,经过指点.终于找到: To enable split action bar, ...
- Eclipse 修改字体
- 随意记的一点 js 笔记
1. 给未经声明的变量赋值在严格模式下会导致抛出 ReferenceError 错误(意思是,所有变量都必须用 var 去定义,不能在函数内部定义全局变量): 2. 在严格模式下,不能定义名为 eva ...