杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.
Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
0.00
0.75
/*
*最近点对的问题
*/ #include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int SIZE = 100005;
const int L = -1;
const int R = 1; typedef struct
{
int index;
double x;
double y; /*用于记录坐标点*/
}coord; coord num[SIZE], c[SIZE]/*用作辅助数组*/; double getDistance(coord &bi1, coord &bi2) /*求得两点之间的距离*/
{
return sqrt(pow(bi1.x - bi2.x, 2.0) + pow(bi1.y - bi2.y, 2.0));
} bool cmpx(coord &bi1, coord &bi2)
{
if (bi1.x == bi1.x)
return bi1.y < bi2.y;
else
return bi1.x < bi2.x;
} bool cmpy(coord &bi1, coord &bi2)
{
if (bi1.y == bi2.y)
return bi1.x < bi2.x;
else
return bi1.y < bi2.y;
} inline double min(double &bi1, double &bi2, double &bi3)
{
double minLength;
minLength = bi1 > bi2 ? bi2 : bi1;
minLength = minLength > bi3 ? bi3 : minLength;
return minLength;
} inline double minDist(double &bi1, double &bi2)
{
if (bi1 > bi2)
return bi2;
return bi1;
} double divide_conquer(int low, int high) /*分治法求最小距离*/
{
double dis;
int count = high - low;
if (count == 0)
{
return 0;
}
else if (count == 1) /*两个数*/
{
dis = getDistance(num[low], num[high]);
}
else if (count == 2) /*三个数*/
{
double temp1, temp2, temp3;
temp1 = getDistance(num[low], num[low + 1]);
temp2 = getDistance(num[low + 1], num[high]);
temp3 = getDistance(num[low], num[high]);
dis = min(temp1, temp2, temp3);
}
else /*大于三个数的情况*/
{
double leftmin, rightmin, min;
int mid = (low + high) / 2;
int p = 0;
int i, j; leftmin = divide_conquer(low, mid); /*求得左边部分的最小值*/
rightmin = divide_conquer(mid + 1, high); /*求得右边部分的最小值*/
dis = minDist(leftmin, rightmin); /*下面从所有坐标点中找出所有x在leftCoord到rightCoord之间的点*/
for (i = low; i <= mid; i++)
{
double leftCoord = num[mid].x - dis;
if (num[i].x >= leftCoord)
{
c[p].index = L; /*标识属于左边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
for ( ; i <= high; i++)
{
double rightCoord = num[mid].x + dis;
if (num[i].x <= rightCoord)
{
c[p].index = R; /*标识属于右边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
sort(c, c + p, cmpy); /*找到的点再从小到大按照y排序一次*/
for (i = 0; i < p; i++)
{
if (c[i].index == L) /*左边的点一个一个地搜索,按照规律,我们只要搜索之后的7个点就可以了*/
{
for (j = 1; (j <= 7) && (i + j < p); j++)
{
if (c[i + j].index == R) /*这个点还必须属于右边*/
{
min = getDistance(c[i], c[i + j]);
if(min < dis)
{
dis = min;
}
}
}
}
}
}
return dis;
} int main ()
{
int n;
while (cin >> n && n != 0)
{
double result = 0; for (int i = 0; i < n; i++)
{
num[i].index = 0;
cin >> num[i].x >> num[i].y;
} sort (num, num + n, cmpx); result = divide_conquer(0, n - 1); printf("%.2lf\n", result / 2);
}
//system ("pause");
return 0;
}
上面的那段代码,说实话,还有很大的问题,不过在杭电上居然也通过了,可见杭电数据之弱!现在发一段修改了bug的代码!这一段代码没有错误!
/*
*最近点对的问题
*/ #include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int SIZE = 100005;
const int L = -1;
const int R = 1; typedef struct
{
int index;
double x;
double y; /*用于记录坐标点*/
}coord; coord num[SIZE], c[SIZE]/*用作辅助数组*/; double getDistance(coord &bi1, coord &bi2) /*求得两点之间的距离*/
{
return sqrt(pow(bi1.x - bi2.x, 2.0) + pow(bi1.y - bi2.y, 2.0));
} bool cmpx(coord &bi1, coord &bi2)
{
if (bi1.x == bi1.x)
return bi1.y < bi2.y;
else
return bi1.x < bi2.x;
} bool cmpy(coord &bi1, coord &bi2)
{
if (bi1.y == bi2.y)
return bi1.x < bi2.x;
else
return bi1.y < bi2.y;
} inline double min(double &bi1, double &bi2, double &bi3)
{
double minLength;
minLength = bi1 > bi2 ? bi2 : bi1;
minLength = minLength > bi3 ? bi3 : minLength;
return minLength;
} inline double minDist(double &bi1, double &bi2)
{
if (bi1 > bi2)
return bi2;
return bi1;
} double divide_conquer(int low, int high) /*分治法求最小距离*/
{
double dis;
int count = high - low;
if (count == 0)
{
return 0;
}
else if (count == 1) /*两个数*/
{
dis = getDistance(num[low], num[high]);
}
else if (count == 2) /*三个数*/
{
double temp1, temp2, temp3;
temp1 = getDistance(num[low], num[low + 1]);
temp2 = getDistance(num[low + 1], num[high]);
temp3 = getDistance(num[low], num[high]);
dis = min(temp1, temp2, temp3);
}
else /*大于三个数的情况*/
{
double leftmin, rightmin, min;
int mid = (low + high) / 2;
int p = 0;
int i, j; leftmin = divide_conquer(low, mid); /*求得左边部分的最小值*/
rightmin = divide_conquer(mid + 1, high); /*求得右边部分的最小值*/
dis = minDist(leftmin, rightmin); /*下面从所有坐标点中找出所有x在leftCoord到rightCoord之间的点*/
for (i = low; i <= mid; i++)
{
double leftCoord = num[mid].x - dis;
if (num[i].x >= leftCoord)
{
c[p].index = L; /*标识属于左边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
for ( ; i <= high; i++)
{
double rightCoord = num[mid].x + dis;
if (num[i].x <= rightCoord)
{
c[p].index = R; /*标识属于右边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
sort(c, c + p, cmpy); /*找到的点再从小到大按照y排序一次*/
for (i = 0; i < p; i++)
{
/*错误出现在这里,上面我是只搜索了左边,并且只计算了7个y值比c[i].y大的点到c[i]的距离,
可是实际上y值比c[i].y小的点也有可能与c[i]取得最小值,所以说上面的程序有错误。真正正确
的解答如下,那就是要搜索所有的点,并计算7个y值比c[i].y大的点到c[i]的距离,由于距离是两个
点之间产生的,一个点的y值比另一个点小,那么必然有另一个点的y值比一个点的大,由于这种关系,
从而保证了搜索出来的是最小的距离!
*/
for (j = 1; (j <= 7) && (i + j < p); j++)
{
if (c[i].index != c[i + j].index) /*最小值只可能出现在两个分别属于不同的边的点上*/
{
min = getDistance(c[i], c[i + j]);
if(min < dis)
dis = min;
}
}
}
}
return dis;
} int main ()
{
int n;
while (cin >> n && n != 0)
{
double result = 0; for (int i = 0; i < n; i++)
{
num[i].index = 0;
cin >> num[i].x >> num[i].y;
} sort (num, num + n, cmpx); result = divide_conquer(0, n - 1); printf("%.2lf\n", result / 2);
}
//system ("pause");
return 0;
}
杭电OJ——1007 Quoit Design(最近点对问题)的更多相关文章
- hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDU 1007 Quoit Design最近点对( 分治法)
题意: 给出平面上的n个点,问任意点对之间的最短距离是多少? 思路: 先将所有点按照x坐标排序,用二分法将n个点一分为二个部分,递归下去直到剩下两或一个点.对于一个部分,左右部分的答案分别都知道,那么 ...
- HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
- C#利用POST实现杭电oj的AC自动机器人,AC率高达50%~~
暑假集训虽然很快乐,偶尔也会比较枯燥,,这个时候就需要自娱自乐... 然后看hdu的排行榜发现,除了一些是虚拟测评机的账号以外,有几个都是AC自动机器人 然后发现有一位作者是用网页填表然后按钮模拟,, ...
- 杭电oj 2095 & 异或^符号在C/C++中的使用
异或^符号,在平时的学习时可能遇到的不多,不过有时使用得当可以发挥意想不到的结果. 值得注意的是,异或运算是建立在二进制基础上的,所有运算过程都是按位异或(即相同为0,不同为1,也称模二加),得到最终 ...
- 用python爬取杭电oj的数据
暑假集训主要是在杭电oj上面刷题,白天与算法作斗争,晚上望干点自己喜欢的事情! 首先,确定要爬取哪些数据: 如上图所示,题目ID,名称,accepted,submissions,都很有用. 查看源代码 ...
- 杭电oj 4004---The Frog Games java解法
import java.util.Arrays; import java.util.Scanner; //杭电oj 4004 //解题思路:利用二分法查找,即先选取跳跃距离的区间,从最大到最小, // ...
- 『ACM C++』HDU杭电OJ | 1415 - Jugs (灌水定理引申)
今天总算开学了,当了班长就是麻烦,明明自己没买书却要带着一波人去领书,那能怎么办呢,只能说我善人心肠哈哈哈,不过我脑子里突然浮起一个念头,大二还要不要继续当这个班委呢,既然已经体验过就可以适当放下了吧 ...
- 杭电oj————2057(java)
question:A+ B again 思路:额,没啥思路/捂脸,用java的long包里的方法,很简单,只是有几次WA,有几点要注意一下 注意:如果数字有加号要删除掉,这里用到了正则表达式“\\+” ...
随机推荐
- centos 6.4 FTP安装和配置
链接地址:http://blog.csdn.net/wind520/article/details/38019647 1: 安装 检查是否安装 [root@localhost ~]# rpm -qa ...
- Nginx 之五: Nginx服务器的负载均衡、缓存与动静分离功能
一.负载均衡: 通过反向代理客户端的请求到一个服务器群组,通过某种算法,将客户端的请求按照自定义的有规律的一种调度调度给后端服务器. Nginx的负载均衡使用upstream定义服务器组,后面跟着组名 ...
- Arcengine 开发,FeatureClass新增feature时“The Geometry has no z-value”或"The Geometry has null z-value"的解决方案
Arcengine 开发,当图层含有Z值时,新增的feature没有Z值就会 出现“The Geometry has no z-value”的错误.意思很明显,新增的geometry没有Z值. 此时按 ...
- 关于Mysql索引的笔记
MySQL索引原理 索引目的 索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql.如果没有索引,那么你可能需 ...
- 高级UNIX环境编程11 线程
<pthread.h> pthread_equal pthread_self(void) pthread_create() pthread_close() pthread_join() p ...
- java学习之内省
反射加内省解决耦合问题 package com.gh.introspector; /** * JavaBean * @author ganhang * */ public class Dog { pr ...
- uva11722 - Joining with Friend(几何概率)
11722 - Joining with Friend You are going from Dhaka to Chittagong by train and you came to know one ...
- ceph存储之ceph客户端
CEPH客户端: 大多数Ceph用户不会直接往Ceph存储集群里存储对象,他们通常会选择Ceph块设备.Ceph文件系统.Ceph对象存储之中的一个或多个: 块设备: 要实践本手册,你必须先完成存储集 ...
- 【Oracle】不安装Oracle客户端直接用PL/SQL连接数据库
1.下载 instantclient_11_2.zip PL/SQL2.解压instantclient_11_2.zip到相应文件夹,比如:E:\oracleclient\instantclient_ ...
- 比赛--找丢失的数--解题报告T
找丢失的数 题目大意: There is a permutation without two numbers in it, and now you know what numbers the perm ...