Theano学习笔记(二)——逻辑回归函数解析
有了前面的准备,能够用Theano实现一个逻辑回归程序。逻辑回归是典型的有监督学习。
为了形象。这里我们如果分类任务是区分人与狗的照片。
首先是生成随机数对象
importnumpy
importtheano
importtheano.tensor as T
rng= numpy.random
数据初始化
有400张照片,这些照片不是人的就是狗的。
每张照片是28*28=784的维度。
D[0]是训练集。是个400*784的矩阵,每一行都是一张照片。
D[1]是每张照片相应的标签。用来记录这张照片是人还是狗。
training_steps是迭代上限。
N= 400
feats= 784
D= (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps= 10000
#Declare Theano symbolic variables
x= T.matrix("x")
y= T.vector("y")
w= theano.shared(rng.randn(feats), name="w")
b= theano.shared(0., name="b")
print"Initial model:"
printw.get_value(), b.get_value()
x是输入的训练集,是个矩阵,把D[0]赋值给它。
y是标签,是个列向量,400个样本所以有400维。把D[1]赋给它。
w是权重列向量。维数为图像的尺寸784维。
b是偏倚项向量,初始值都是0。这里没写成向量是由于之后要广播形式。
#Construct Theano expression graph
p_1= 1 / (1 + T.exp(-T.dot(x, w) - b)) #Probability that target = 1
prediction= p_1 > 0.5 # Theprediction thresholded
xent= -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost= xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
gw,gb = T.grad(cost, [w, b]) #Compute the gradient of the cost
# (we shall return to this in a
#following section of this tutorial)
这里是函数的主干部分,涉及到3个公式
1.判定函数
{h_\theta }\left( x \right) = \frac{1}{{I + {e^{ - {\theta ^T}X}}}}" alt="">
2.代价函数
Cost\left( {{h_\theta }\left( x \right),y} \right) = \left\{ \begin{array}{r}\begin{array}{*{20}{c}}{ - \log \left( {{h_\theta }\left( x \right)} \right)}&{\begin{array}{*{20}{c}}{if}&{y = 1}\end{array}}\end{array}\\\begin{array}{*{20}{c}}{ - \log \left( {1 - {h_\theta }\left( x \right)} \right)}&{\begin{array}{*{20}{c}}{if}&{y = 0}\end{array}}\end{array}\end{array} \right." alt="">
3.总目标函数
第二项是权重衰减项,减小权重的幅度。用来防止过拟合的。
#Compile
train= theano.function(
inputs=[x,y],
outputs=[prediction, xent],
updates=((w, w - 0.1 * gw), (b, b -0.1 * gb)))
predict= theano.function(inputs=[x], outputs=prediction)
构造预測和训练函数。
#Train
fori in range(training_steps):
pred,err = train(D[0], D[1])
print"Final model:"
printw.get_value(), b.get_value()
print"target values for D:", D[1]
print"prediction on D:", predict(D[0])
这里算过之后发现,经过10000次训练,预測结果与标签已经全然同样了。
欢迎參与讨论并关注本博客和微博以及知乎个人主页兴许内容继续更新哦~
转载请您尊重作者的劳动,完整保留上述文字以及文章链接,谢谢您的支持。
Theano学习笔记(二)——逻辑回归函数解析的更多相关文章
- [Firefly引擎][学习笔记二][已完结]卡牌游戏开发模型的设计
源地址:http://bbs.9miao.com/thread-44603-1-1.html 在此补充一下Socket的验证机制:socket登陆验证.会采用session会话超时的机制做心跳接口验证 ...
- 微信小程序学习笔记二 数据绑定 + 事件绑定
微信小程序学习笔记二 1. 小程序特点概述 没有DOM 组件化开发: 具备特定功能效果的代码集合 体积小, 单个压缩包体积不能大于2M, 否则无法上线 小程序的四个重要的文件 *js *.wxml - ...
- MongoDB学习笔记二- Mongoose
MongoDB学习笔记二 Mongoose Mongoose 简介 之前我们都是通过shell来完成对数据库的各种操作, 在开发中大部分时候我们都需要通过程序来完成对数据库的操作 而Mongoose就 ...
- java之jvm学习笔记二(类装载器的体系结构)
java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...
- 《SQL必知必会》学习笔记二)
<SQL必知必会>学习笔记(二) 咱们接着上一篇的内容继续.这一篇主要回顾子查询,联合查询,复制表这三类内容. 上一部分基本上都是简单的Select查询,即从单个数据库表中检索数据的单条语 ...
- Django学习笔记二
Django学习笔记二 模型类,字段,选项,查询,关联,聚合函数,管理器, 一 字段属性和选项 1.1 模型类属性命名限制 1)不能是python的保留关键字. 2)不允许使用连续的下划线,这是由dj ...
- ES6学习笔记<二>arrow functions 箭头函数、template string、destructuring
接着上一篇的说. arrow functions 箭头函数 => 更便捷的函数声明 document.getElementById("click_1").onclick = ...
- muduo学习笔记(二)Reactor关键结构
目录 muduo学习笔记(二)Reactor关键结构 Reactor简述 什么是Reactor Reactor模型的优缺点 poll简述 poll使用样例 muduo Reactor关键结构 Chan ...
- python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码
python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码 python的json.dumps方法默认会输出成这种格式"\u535a\u ...
- python3.4学习笔记(二十四) Python pycharm window安装redis MySQL-python相关方法
python3.4学习笔记(二十四) Python pycharm window安装redis MySQL-python相关方法window安装redis,下载Redis的压缩包https://git ...
随机推荐
- linq中的group by
现有如下需求,要求统计int数组中每个整数的个数: ,,,,,,,,,,,, }; var linq = from item in arrInt group item by item into g// ...
- mysql简单使用增删改查
修改配置文件 在my.in配置文件 找到client 指的是mysql客户端 port3306 default -charachter-set=utf-8 default -charachter-se ...
- 类之string类、Math类、DateTime类
String类 string a = "abcdef123456"; 注:字符串的长度是从0开始计数的如:0,1,2,3,4,5,6,7,8,9........ a.Length; ...
- PHP7特性概览
了解了PHP7的一些特性,搭建PHP7源码编译环境,并运行官网这些新特性的代码. 在64位平台支持64位integer 在64位平台支持64位integer,长度为2^64-1 字符串. 更详细查看 ...
- php 学习笔记 数组1
1.一般情况下$name['tom']和$name[tom]是相同的:但没有引号的键不能和常量区别开,如:define('index', 5)时:$name['tom']和$name[tom]不同 2 ...
- Spring MVC整体处理流程
一.spring整体结构 首先俯视一下spring mvc的整体结构 二.处理流程 1.请求处理的第一站就是DispatcherServlet.它是整个spring mvc的控制核心.与大多数的jav ...
- 面向对象程序设计-C++ Type conversion (Static) & Inheritance & Composition【第十二次上课笔记】
这节课继续讲解了 static 作为静态数据成员 / 成员函数的用法 具体详解我都已注释出来了,大家可以慢慢看 有任何问题都可以在这篇文章下留言我会及时解答 :) //static 静态数据成员 // ...
- python爬虫实战2百度贴吧爬html
转自:http://blog.csdn.net/wxg694175346/article/details/8927832 import string, urllib2 #定义百度函数 def baid ...
- cocos2dx进阶学习之CCObject
继承关系 CCObject -> CCCopying 类定义 class CC_DLL CCObject : public CCCopying { public: // object id, C ...
- 比较优势 - MBA智库百科
比较优势 - MBA智库百科 比较优势 出自 MBA智库百科(http://wiki.mbalib.com/) 这是一个消除歧义页--使用相同或相近标题,而主题不同的条目列表.如果您是通过某个内部 ...