代码随想录算法训练营

代码随想录算法训练营Day14 二叉树|理论基础 递归遍历

基础知识

二叉树都是通过栈来实现的。

二叉树的种类

在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

如图所示:



这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。

完全二叉树

什么是完全二叉树?

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1)  个节点。

大家要自己看完全二叉树的定义,很多同学对完全二叉树其实不是真正的懂了。

例如:



最后一个二叉树是不是完全二叉树。

之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,==二叉搜索树是一个有序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

    下面这两棵树都是搜索树 

平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如图:



最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_map底层实现是哈希表。

所以大家使用自己熟悉的编程语言写算法,一定要知道常用的容器底层都是如何实现的,最基本的就是map、set等等,否则自己写的代码,自己对其性能分析都分析不清楚!

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

那么链式存储方式就用指针, 顺序存储的方式就是用数组。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储如图:

链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?

其实就是用数组来存储二叉树,顺序存储的方式如图:



用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的遍历方式

链式存储是大家很熟悉的一种方式,那么如何顺序存储呢?

其实就是用数组来存储二叉树,顺序存储的方式如图:



用数组来存储二叉树如何遍历的呢?

如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。

所以大家要了解,用数组依然可以表示二叉树。

二叉树的遍历方式

关于二叉树的遍历方式,要知道二叉树遍历的基本方式都有哪些。

一些同学用做了很多二叉树的题目了,可能知道前中后序遍历,可能知道层序遍历,但是却没有框架。

我这里把二叉树的几种遍历方式列出来,大家就可以一一串起来了。

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

    这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。

    那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:
  • 深度优先遍历

    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  • 广度优先遍历
    • 层次遍历(迭代法)

      在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。

      这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。

      看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式
  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中

    大家可以对着如下图,看看自己理解的前后中序有没有问题。



    最后再说一说二叉树中深度优先和广度优先遍历实现方式,我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。

    之前我们讲栈与队列的时候,就说过栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用非递归的方式来实现的。

    而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

    这里其实我们又了解了栈与队列的一个应用场景了。

    具体的实现我们后面都会讲的,这里大家先要清楚这些理论基础。

二叉树的定义

C++代码如下:

struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。

这里要提醒大家要注意二叉树节点定义的书写方式。

在现场面试的时候 面试官可能要求手写代码,所以数据结构的定义以及简单逻辑的代码一定要锻炼白纸写出来。

因为我们在刷leetcode的时候,节点的定义默认都定义好了,真到面试的时候,需要自己写节点定义的时候,有时候会一脸懵逼!

递归遍历

实现依据

每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
  3. 确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

    好了,我们确认了递归的三要素,接下来就来练练手:
  4. 确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入vector来放节点的数值,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:

    void traversal(TreeNode* cur, vector<int>& vec)
  5. 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:

    if (cur == NULL) return;
  6. 确定单层递归的逻辑:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:

    vec.push_back(cur->val); // 中

    traversal(cur->left, vec); // 左

    traversal(cur->right, vec); // 右

    单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了,再看一下完整代码:

递归代码写法

前序遍历:

class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
vec.push_back(cur->val); // 中
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root, result);
return result;
}
};

那么前序遍历写出来之后,中序和后序遍历就不难理解了,代码如下:

中序遍历:

void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal(cur->left, vec); // 左
vec.push_back(cur->val); // 中
traversal(cur->right, vec); // 右
}

后序遍历:

void traversal(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal(cur->left, vec); // 左
traversal(cur->right, vec); // 右
vec.push_back(cur->val); // 中
}

迭代遍历

首先,递归实现是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中。然后递归返回的时候从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置原因。

前序遍历(迭代法)

前序遍历时根2左右,每次先处理中间根节点,先将根节点放入栈中,然后右孩子,最后左孩子。先加入右孩子,再加入左孩子,这样在出栈时候才能保证是中左右的顺序。

动画演示:



代码如下:

class Solution{
public:
vector<int> preorderTraversal(TreeNode* root){
stack<TreeNode*> st;
if(root==NULL) teturn result;
st.push(root);
while(!st.empty()){
TreeNode* Node=st.stop();
st.pop();
result.push_back(node->val);
if(node->right) st.push(node->right);
if(node->left) st.push(node->left);
}
return result;
}
}

使用迭代法写前序遍历并不难,但此时的逻辑无法直接用在中序遍历上。

在迭代过程中,我们有两个操作:

  1. 处理:将元素放在result数组中
  2. 访问:遍历节点

中序遍历(迭代法)

由于前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。

中序遍历是左中右,先访问的是二叉树顶部的节点,直到树左面的最底部,再开始处理节点(也就是把结点的数值放到result数组中),这就造成了处理顺序和访问顺序是不一致的。

所以再使用迭代法处理中序遍历时,需要借助指针的的帮助来访问节点,栈则用来处理节点上的元素。

动画演示:

代码如下:

class Solution{
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st;
TreeNode* cur=root;
while(cur!=NULL||!st.empty()){
if(cur!=NULL){//指针来访问节点,访问到最底层
st.push(cur);//将访问的节点放进栈
cur=cur->left;
}else{
cur=st.top();//从栈里弹出的数据(result数组里的数据),就是要处理的数据
st.pop();
result.push_back(cur-val);//中
cur=cur->right;//右
}
}
return result;
}
}

后序遍历

后序遍历和先序遍历的思路类似,只要先调整先序遍历的代码顺序,就变成中右左的顺序,然后再反转result数组,输出的结果就是左右中了。

代码实现:

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> result;
if (root == NULL) return result;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
result.push_back(node->val);
if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)
if (node->right) st.push(node->right); // 空节点不入栈
}
reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了
return result;
}
};

总结

此时我们用迭代法写出了二叉树的前后中序遍历,大家可以看出前序和中序是完全两种代码风格,并不像递归写法那样代码稍做调整,就可以实现前后中序。

这是因为前序遍历中访问节点(遍历节点)和处理节点(将元素放进result数组中)可以同步处理,但是中序就无法做到同步!

代码随想录算法训练营Day14 二叉树的更多相关文章

  1. 代码随想录算法训练营day14 | leetcode 层序遍历 226.翻转二叉树 101.对称二叉树 2

    层序遍历 /** * 二叉树的层序遍历 */ class QueueTraverse { /** * 存放一层一层的数据 */ public List<List<Integer>&g ...

  2. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  3. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  4. 代码随想录算法训练营day21 | leetcode ● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● ***236. 二叉树的最近公共祖先

    LeetCode 530.二叉搜索树的最小绝对差 分析1.0 二叉搜索树,中序遍历形成一个升序数组,节点差最小值一定在中序遍历两个相邻节点产生 ✡✡✡ 即 双指针思想在树遍历中的应用 class So ...

  5. 代码随想录算法训练营day20 | leetcode ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树

    LeetCode 654.最大二叉树 分析1.0 if(start == end) return节点索引 locateMaxNode(arr,start,end) new root = 最大索引对应节 ...

  6. 代码随想录算法训练营day18 | leetcode 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树

    LeetCode 513.找树左下角的值 分析1.0 二叉树的 最底层 最左边 节点的值,层序遍历获取最后一层首个节点值,记录每一层的首个节点,当没有下一层时,返回这个节点 class Solutio ...

  7. 代码随想录算法训练营day16 | leetcode ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数

    基础知识 二叉树的多种遍历方式,每种遍历方式各有其特点 LeetCode 104.二叉树的最大深度 分析1.0 往下遍历深度++,往上回溯深度-- class Solution { int deep ...

  8. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  9. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  10. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

随机推荐

  1. Oracle 服务器概念梳理

    Oracle 公司是世界上最大的信息管理软件及服务提供商,因其复杂的关系数据库产品而闻名.Oracle 的关系数据库是世界上第一个支持 SQL 语言的数据库.支持服务器/客户机等部署.Oracle 数 ...

  2. 雪花算法 SnowFlake 内部结构【分布式ID生成策略】

    更多内容,前往IT-BLOG 一.前言   如何在分布式集群中生产全局唯一的 ID?[方案一]UUID:UUID是通用唯一识别码 (Universally Unique Identifier),在其他 ...

  3. AQS 锁核心类详解

    系统性学习,异步IT-BLOG AQS(AbstractQuenedSynchronizer 抽象队列同步器) 是一个用来构建锁和同步器的框架,使用 AQS能简单且高效地构造出应用广泛的大量的同步器, ...

  4. Win11右键菜单改回传统样式

    Win11右键菜单,比较不人性化,隐藏了一些常用选项,需要点"更多选项"才能显示,多次一举. 解决方法,一句话: reg.exe add "HKCU\Software\C ...

  5. TiDB SQL调优案例之避免TiFlash帮倒忙

    背景 早上收到某系统的告警tidb节点挂掉无法访问,情况十万火急.登录中控机查了一下display信息,4个TiDB.Prometheus.Grafana全挂了,某台机器hang死无法连接,经过快速重 ...

  6. HTTP TCP UDP WEBSOCKET

    概念: TCP和UDP:传输层协议:(卡车) HTTP:应用层协议:(货物).HTTP(超文本传输协议)是利用TCP在两台电脑(通常是Web服务器和客户端)之间传输信息的协议.客户端使用Web浏览器发 ...

  7. 基于开源的 ChatGPT Web UI 项目,快速构建属于自己的 ChatGPT 站点

    作为一个技术博主,了不起比较喜欢各种折腾,之前给大家介绍过 ChatGPT 接入微信,钉钉和知识星球(如果没看过的可以翻翻前面的文章),最近再看开源项目的时候,发现了一个 ChatGPT Web UI ...

  8. 排队论——系统运行指标的R语言实现

    排队是在日常生活中经常遇到的现象,如顾客到商店购买物品.病人到医院看病常常要排队.此时要求服务的数量超过服务机构(服务台.服务员等)的容量.也就是说,到达的顾客不能立即得到服务,因而出现了排队现象.这 ...

  9. USART串口_第三课

    串口发送与接收 1.阻塞式发送 1.1.练习receive() 和Transmit() 测试1:测试接收发送函数 receive() 和 Transmit() 在main()中写入测试代码:将stm3 ...

  10. IT技术相关学习网站推荐

    引入在线jQuery的地址   http://code.jquery.com 唠嗑吧 IT技术经验交流    http://www.laodao8.com 博学谷视频库  传智播客   http:// ...