【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 561 Solved: 293
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
X.
..
.X
Sample Output
HINT
Source
Solution
这道题有点劲!自己没想出来,于是看的论文 传送门 下面引用论文里的题解
对于一个合法的数填写方案,其中的数放置的顺序对其是没有影响的,于是我们可以从1开始填数,并且一个一个地填进格子。如果采取这样的做法,那么所有的“X”必然要在其周边所有的格子填数之前就填好一个数,而"X"有多少呢?很显然最多只有8个而已。这时我们就可以想到这样的一个状态压缩方式:opt[i][j](j是一个二进制表达)表示的是i及其以后的数还没有填进格子,被填写了数的“X”集合状态为j的情况下的方案数。
如上图4*7的矩阵中,红色的"X"表示已经填写数的"X",红色的格子表示已经填写数的非"X"格子,那么可以表述成这样的状态opt[8][num](8表示已经填写了7个数,下一个填写8,num是011010的表示,含义是第2、3、5个"X"已经填写了数了)
如果我们转移的话就会有两种情况:
第一种情况就是把i填进一个"X"中,这个显然只要枚举一下放哪一个"X",然后把这个"X"加入j表示的集合里就可以了。
如上图,下一步我们填写"X"是可以随意的,因为只要存在解,任意的"X"都是互不影响的。当前的状态为f[8][num1](num1为011010的表示),可以推导到f[9][num2](num2为111010、011110、011011的表示)。
第二种情况就是把i填进一个非"X"中,这样的选择就有很多了。对于全图我们一共有n*m个格子,若没有填进去数的"X"格子以及其周边的格子共有tot个,显然这tot个格子都是不能填i的(因为填进的是一个非"X",并且一个没有填进去数的"X"格子其周边因为都要比它小,所以这两者都不可以填i),又因为已经填写了1到i-1所有的数,所以剩下能填的选择数就是n*m-tot-(i-1)。
如上图,所有的蓝色区域都是无法填写i的,而下一步能填写的格子就只有白色的格子,即4*7-17-7=4个格子。
由于这样的处理方式,尤其是第二种转移可能会导致非"X"点变为最小值,所以还需要使用容斥原理来解决。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
#define P 12345678
int N,M,ANS,bin[],f[][],cnt[];
char mp[][];
int dx[]={-,-,-,,,,,,,},dy[]={-,,,-,,,-,,,};
inline bool OK(int x,int y) {return x>= && x<=N && y>= && y<=M;}
#define Pa pair<int,int>
Pa stack[]; int top;
bool visit[][];
inline void PreWork()
{
top=;
for (int i=; i<=N; i++)
for (int j=; j<=M; j++)
if (mp[i][j]=='X') stack[top++]=make_pair(i,j);
for (int i=; i<bin[top]; i++)
{
cnt[i]=; memset(visit,,sizeof(visit));
for (int j=; j<top; j++) if (~i&bin[j]) visit[stack[j].first][stack[j].second]=;
for (int j=; j<=N; j++)
for (int k=; k<=M; k++)
if (!visit[j][k])
{
bool flag=;
for (int d=,x,y; d<= && flag; d++)
x=j+dx[d],y=k+dy[d],flag=!visit[x][y];
cnt[i]+=flag;
}
}
}
inline int DP()
{
PreWork();
memset(f,,sizeof(f));
f[][]=;
for (int i=; i<=N*M; i++)
for (int j=; j<bin[top]; j++)
{
for (int k=; k<top; k++)
if (j&bin[k]) (f[i][j]+=f[i-][j^bin[k]])%=P;
(f[i][j]+=(LL)f[i-][j]*(cnt[j]-(i-))%P)%=P;
}
return f[N*M][bin[top]-];
}
inline void DFS(int dep,int x,int y)
{
if (y==M+) {DFS(dep,x+,); return;}
if (x==N+) {(ANS+=(LL)DP()*(dep&? -:)%P)%=P; return;}
DFS(dep,x,y+);
bool flag=;
for (int i=; i<= && flag; i++)
if (mp[x+dx[i]][y+dy[i]]=='X') flag=;
if (flag) mp[x][y]='X',DFS(dep+,x,y+),mp[x][y]='.';
}
int main()
{
bin[]=; for (int i=; i<=; i++) bin[i]=bin[i-]<<;
scanf("%d%d",&N,&M);
for (int i=; i<=N; i++) scanf("%s",mp[i]+);
DFS(,,);
printf("%d\n",(ANS+P)%P);
return ;
}
菜鸡.jpg
【BZOJ-2669】局部极小值 状压DP + 容斥原理的更多相关文章
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- BZOJ 2064: 分裂( 状压dp )
n1+n2次一定可以满足..然后假如之前土地集合S1的子集subs1和之后土地集合S2的子集subs2相等的话...那么就少了2个+操作...所以最后答案就是n1+n2-少掉的最多操作数, 由状压dp ...
- 4455: [Zjoi2016]小星星|状压DP|容斥原理
OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #includ ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...
- HDU5838 Mountain(状压DP + 容斥原理)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...
随机推荐
- CoreData的一些简单运用
1.首先创建一个新的工程 记得勾选下面的 Use Core Data 万恶分割线———————————————————————— 然后点击Add Entity 创建一个类似于表名. 万恶分割线———— ...
- IOS基础之UILineBreakModeWordWrap
UILineBreakModeWordWrap详细解释如下: typedef enum { UILineBreakModeWordWrap = 0, UILineBreakModeC ...
- MVC学习系列2--向Action方法传递参数
首先,新建一个web项目,新建一个Home控制器,默认的代码如下: public class HomeController : Controller { // GET: Home public Act ...
- python爬虫—爬取百度百科数据
爬虫框架:开发平台 centos6.7 根据慕课网爬虫教程编写代码 片区百度百科url,标题,内容 分为4个模块:html_downloader.py 下载器 html_outputer.py 爬取数 ...
- Android Fragment生命周期
Fragment与Activity的生命周期关系: 刚打开Activity:Fragment onAttach > Fragment onCreate > Fragment onCreat ...
- MySQL学习笔记之视图
视图是对磁盘上保存的表数据的抽象,即抽取一个表或多个表的部分行或列的数据,展示给使用者. 首先列举下MySQL中最简单的对视图操作的语法: 1.创建视图: create view 视图名 as sel ...
- Conquer and Divide经典例子之汉诺塔问题
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...
- EF6 DataMigration 从入门到进阶
引言 在EntityFramework的开发过程中我们有时因需求变化或者数据结构设计的变化经常会改动表结构.但数据库Schema发生变化时EF会要求我们做DataMigration 和UpdateDa ...
- opencv_haar分类器的训练
本文为作者原创,未经允许不得转载:原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5345412.html 因为工作的原因,本人需要用到分类器来检测 ...
- 第一个JAVA应用
1.1创建源文件 1.1.1Java源文件结构 Java应用由一个或多个扩展名为“.Java”的文件构成,这些文件被成为源文件.从编译角度,则被称为编译单元(Compilation Unit). 如果 ...


