(以下内容重新更新,主要讲解FID的意义,为何FID能够表示生成图像的多样性和质量,为什么FID越小,则图像多样性越好,质量也越好)

  在计算FID中我们也同样使用inception network网络。我们还是先来简单回顾一下什么是inception network,它就是一个特征提取的深度网络,最后一层是一个pooling层,然后可以输出一张图像的类别。在计算FID时,我们去掉这个最后一层pooling层,得到的是一个2048维的高层特征,以下简称n维特征。我们继续简化一下,那么这个n维特征是一个向量。则有:对于我们已经拥有的真实图像,这个向量是服从一个分布的,(我们可以假设它是服从一个高斯分布);对于那些用GAN来生成的n维特征它也是一个分布;我们应该立马能够知道了,GAN的目标就是使得两个分布尽量相同。假如两个分布相同,那么生成图像的真实性和多样性就和训练数据相同了。于是,现在的问题就是,怎么计算两个分布之间的距离呢?我们需要注意到这两个分布是多变量的,也就是前面提到的n维特征。也就是说我们计算的是两个多维变量分布之间的距离,数学上可以用Wasserstein-2 distance或者Frechet distance来进行计算。以下简单介绍一下如何计算这个距离。

  假如一个随机变量服从高斯分布,这个分布可以用一个均值和方差来确定。那么两个分布只要均值和方差相同,则两个分布相同。我们就利用这个均值和方差来计算这两个单变量高斯分布之间的距离。但我们这里是多维的分布,我们知道协方差矩阵可以用来衡量两个维度之间的相关性。所以,我们使用均值和协方差矩阵来计算两个分布之间的距离。均值的维度就是前面n维特征的维度,也就是n维;协方差矩阵则是n*n的矩阵。

  最后,我们可以使用下面的公式计算FID(看这个公式之前务必要记住这个公式的物理意义,毕竟我们不是专门的数学学习者):

公式中,T r TrTr 表示矩阵对角线上元素的总和,矩阵论中俗称“迹”(trace)。均值为 μ \muμ 协方差为 Σ \SigmaΣ 。此外x xx表示真实的图片,g gg是生成的图片。

较低的FID意味着两个分布之间更接近,也就意味着生成图片的质量较高、多样性较好。

FID对模型坍塌更加敏感。相比较IS来说,FID对噪声有更好的鲁棒性。因为假如只有一种图片时,FID这个距离将会相当的高。因此,FID更适合描述GAN网络的多样性。

同样的,FID和IS都是基于特征提取,也就是依赖于某些特征的出现或者不出现。但是他们都无法描述这些特征的空间关系。

————————————————
原文链接:https://blog.csdn.net/qq_27261889/article/details/86483505

Frechet Inception Distance的更多相关文章

  1. GAN量化评估方法——IS(Inception Score)和FID(Frechet Inception Distance score)

    生成模型产生的是高维的复杂结构数据,它们不同于判别模型,很难用简单的指标来评估模型的好坏.下面介绍两种当前比较流行的评估生成模型的指标(仅判别图像):IS(Inception Score)和FID(F ...

  2. Fréchet Inception Distance(FID)

    计算 IS 时只考虑了生成样本,没有考虑真实数据,即 IS 无法反映真实数据和样本之间的距离,IS 判断数据真实性的依据,源于 Inception V3 的训练集 ------ ImageNet,在 ...

  3. (转)GANs and Divergence Minimization

    GANs and Divergence Minimization 2018-12-22 09:38:27     This blog is copied from: https://colinraff ...

  4. 强化学习论文(Scalable agent alignment via reward modeling: a research direction)

     原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...

  5. GAN实战笔记——第五章训练与普遍挑战:为成功而GAN

    训练与普遍挑战:为成功而GAN 一.评估 回顾一下第1章中伪造达・芬奇画作的类比.假设一个伪造者(生成器)正在试图模仿达・芬奇,想使这幅伪造的画被展览接收.伪造者要与艺术评论家(判别器)竞争,后者试图 ...

  6. LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS

    最强GAN图像生成器,真假难辨 论文地址: https://openreview.net/pdf?id=B1xsqj09Fm 更多样本地址: https://drive.google.com/driv ...

  7. CSAGAN:LinesToFacePhoto: Face Photo Generation from Lines with Conditional Self-Attention Generative Adversarial Network - 1 - 论文学习

    ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务.先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像.然 ...

  8. AI佳作解读系列(六) - 生成对抗网络(GAN)综述精华

    注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian G ...

  9. GAN入门

    1 GAN基本概念 1.1 什么是生成对抗网络? 生成对抗网络(GAN, Generative adversarial network) 在 2014 年被 Ian Goodfellow 提出. GA ...

  10. [LeetCode] Total Hamming Distance 全部汉明距离

    The Hamming distance between two integers is the number of positions at which the corresponding bits ...

随机推荐

  1. 浅谈kafka

    作者:京东科技 徐拥 入门 1.什么是kafka? apache Kafka is a distributed streaming platform. What exactly dose that m ...

  2. 使用 arxiv-sanity &paperwithcode 跟进最新研究领域的文章

    1.arxiv-sanity介绍 arxiv.org是一个非常大的预印本资源库,里面有大量的最新的论文,但缺点是浏览.搜索和排序不是很方便.这个资源库每天会更新大量的论文,如果通过手动搜索和浏览则效率 ...

  3. word论文常用格式设定技巧【公式对齐、制表符公式编号等】

    1.公式对齐 改动前: 改动后结果: 2.段落行距要求 对于文字可以设定为1.5倍行距 对于公式 5号字体对应1.5倍行距大概在23.4磅,因此可以根据需求适当调整大小. 3.公式标号---使用制表符 ...

  4. NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法等

    NLP专栏简介:数据增强.智能标注.意图识别算法|多分类算法.文本信息抽取.多模态信息抽取.可解释性分析.性能调优.模型压缩算法等 专栏链接:NLP领域知识+项目+码源+方案设计 订阅本专栏你能获得什 ...

  5. tensorflow语法【tf.matmul() 、loc和iloc函数、tf.expand_dims()】

    相关文章: [一]tensorflow安装.常用python镜像源.tensorflow 深度学习强化学习教学 [二]tensorflow调试报错.tensorflow 深度学习强化学习教学 [三]t ...

  6. 【编写环境二】python库scipy.stats各种分布函数生成、以及随机数生成【泊松分布、正态分布等】

    平时我们在编写代码是会经常用到一些随机数,而这些随机数服从一定的概率分布. 1.泊松分布.正态分布等生成方法 1.1常见分布: stats连续型随机变量的公共方法: *离散分布的简单方法大多数与连续分 ...

  7. Flask WTForms 表单插件的使用

    在Web应用中,表单处理是一个基本而常见的任务.Python的WTForms库通过提供表单的结构.验证和渲染等功能,简化了表单的处理流程.与此同时,Flask的扩展Flask-WTF更进一步地整合了W ...

  8. webpack与其常见loader加载器使用方式

    webpack是什么 webpack是前端项目工程化的具体解决方案. 主要功能:提供了友好的前端模块化开发支持,支持代码压缩混淆(去除空格和注释,让文件体积更小),处理浏览器端JS的兼容性(将箭头函数 ...

  9. 【AI视频教程】只需5步,AI作出鸡你太美视频

    1.视频效果 黄昏见证虔诚的信徒 2.准备工作 制作视频效果,需要准备下面3个条件: 准备stable diffusion的环境 剪辑一段[鸡你太美]原版视频 stable diffusion安装sd ...

  10. 【奶奶看了也不会】AI绘画 Mac安装stable-diffusion-webui绘制AI妹子保姆级教程

    1.作品图 2.准备工作 目前网上能搜到的stable-diffusion-webui的安装教程都是Window和Mac M1芯片的,而对于因特尔芯片的文章少之又少,这就导致我们还在用老Intel 芯 ...