【WCH以太网接口系列芯片】基于CH395的组播应用
---------------------------------------------------------------------------------------------------------------------------------------------------
组播(Multicast)是一种在计算机网络中实现一对多通信的技术。在传统的单播(Unicast)通信中,一台计算机发送数据,只有特定的目标计算机可以接收到数据。而在组播中,一台计算机可以同时发送数据给一个组播组中的多个计算机,只有属于该组的计算机才能接收到数据。组播技术可以有效地减少数据在网络中的传输量,提高网络的效率。
CH395Q/L芯片是一款以太网协议栈芯片,它支持组播应用,同时可以通过MAC过滤模式来接受组播数据包。
本文通过使用沁恒CH32V307单片机SPI驱动CH395Q,编译软件为MRS。
首先,在主函数中对CH395进行初始化(注意主程序开始时先延时200ms时间以上和初始化延时),IP和网关及相关变量信息不在这边复述,程序代码见文章链接地址。
CH395CMDReset(); /* 复位CH395芯片 */
Delay_Ms(1000); /* 延时1000毫秒,要分开写,否则无效 */
Delay_Ms(1000);
i = CH395CMDGetVer(); /*获取芯片以及固件版本号 */
printf("CH395CMDGetVer:%x\n",i);
InitCH395InfParam(); /* 初始化CH395相关变量 */
i = CH395Init(); /* 初始化CH395芯片 ,200Ms以上*/
printf("CH395Init:%x\n",i);
mStopIfError(i); /*调试使用,显示错误代码,并停机*/
初始化完成后,根据CH395相关例程和手册(5.11节)描述,通过CMD_SET_MAC_FILT设置MAC过滤模式,该命令共9个字节数据。第一个字节用来设置过滤模式(图1示该字节的各位含义),芯片复位后默认是开启第0、3、4位的。程序中开启接收组播包,因此第一位写入0x1d。

图1 CH395MAC过滤模式第一字节各位含义
第 2 至第 5 字节为 HASH0(哈希表 0),第 6 至第 9 字节为 HASH1(哈希表 1),仅在多播开启有效。哈希表算法可以通过目的地址MAC地址计算出32位的CRC值,使用此 CRC 值的高 6 位作为索引值,将 HASH 表对应的位写 1。哈希算法可根据实际优化,通过该种算法可以过滤大部分无效帧,减少芯片处理负荷。
MacCrc32 = CH395CRCRet6Bit(MultiMac_1); //该命令详细内容可以参考官网提供的例程CH395CMD中
printf("MacCrc32 : %2x\n",(uint16_t)MacCrc32);
if(MacCrc32 > 31)
{
MacCrc32 -=32;
printf("MacCrc32_1 : %2x\n",(uint16_t)MacCrc32);
Hash1 = Hash1|((uint32_t)1<<MacCrc32);
}
else
{
Hash0 |= ((uint32_t)1<<MacCrc32);
}
printf("Hash0:%lx\r\n",(uint32_t)Hash0);
printf("Hash1:%lx\r\n",(uint32_t)Hash1);
CH395CMDSetMACFilt(0x1d, Hash0, Hash1);//开启接收多播包
MacCrc32 = CH395CRCRet6Bit(MultiMac_2);
printf("MacCrc32 : %2x\n",(uint16_t)MacCrc32);
if(MacCrc32 > 31)
{
MacCrc32 -=32;
printf("MacCrc32_2 : %2x\n",(uint16_t)MacCrc32);
Hash1 = Hash1|((uint32_t)1<<MacCrc32);
}
else
{
Hash0 |= ((uint32_t)1<<MacCrc32);
}
printf("Hash0:%lx\r\n",(uint32_t)Hash0);
printf("Hash1:%lx\r\n",(uint32_t)Hash1);
CH395CMDSetMACFilt(0x1d, Hash0, Hash1);
完成这些配置后,则对相应的scoket进行初始化和打开,注意socket要配置为UDP模式下。
void InitSocketParam(void)
{
memset(&sockinf[0],0,sizeof(sockinf[0])); /* 将SockInf[0]全部清零*/
memcpy(&sockinf[0].IPAddr, BroadcastIP,sizeof(BroadcastIP)); /* 如果启用UDP SERVER功能,需将目的IP设为广播地址255.255.255.255 */
// sockinf[0].DesPort = Socket0DesPort; /* 目的端口 */
sockinf[0].SourPort= Socket0SourPort; /* 源端口 */
sockinf[0].ProtoType=PROTO_TYPE_UDP; /* UDP模式 */
memset(&sockinf[1],0,sizeof(sockinf[1])); /* 将SockInf[0]全部清零*/
memcpy(&sockinf[1].IPAddr, BroadcastIP,sizeof(BroadcastIP)); /* 如果启用UDP SERVER功能,需将目的IP设为广播地址255.255.255.255 */
// sockinf[1].DesPort = Socket1DesPort; /* 目的端口 */
sockinf[1].SourPort= Socket1SourPort; /* 源端口 */
sockinf[1].ProtoType=PROTO_TYPE_UDP; /* UDP模式 */
}
void CH395SocketInitOpen(void)
{
UINT8 i;
/* socket 0为UDP模式 */
CH395SetSocketDesIP(0,sockinf[0].IPAddr); /* 设置socket 0目标IP地址 */
CH395SetSocketProtType(0,sockinf[0].ProtoType); /* 设置socket 0协议类型 */
// CH395SetSocketDesPort(0,sockinf[0].DesPort); /* 设置socket 0目的端口 */
CH395SetSocketSourPort(0,sockinf[0].SourPort); /* 设置socket 0源端口 */
i = CH395OpenSocket(0); /* 打开socket 0 */
mStopIfError(i);
CH395SetSocketDesIP(1,sockinf[1].IPAddr); /* 设置socket 0目标IP地址 */
CH395SetSocketProtType(1,sockinf[1].ProtoType); /* 设置socket 0协议类型 */
// CH395SetSocketDesPort(1,sockinf[1].DesPort); /* 设置socket 0目的端口 */
CH395SetSocketSourPort(1,sockinf[1].SourPort); /* 设置socket 0源端口 */
i = CH395OpenSocket(1); /* 打开socket 0 */
mStopIfError(i);
}
到这里的CH395的配置信息就满足组播应用需求了,注意使用时需要对CH395全局和Socket中断信息的读写,这里不再描述,可以参考例程代码。
---------------------------------------------------------------------------------------------------------------------------------------------------
配置完成后,我们可以通过网络测试工具和wireshark进行数据测试和抓包。
首先,通过网络测试工具建立一个UDP,目标IP为224.1.1.4,目标端口为6000,定时向224.1.1.4地址发送数据,图2示。

图2 网络测试工具配置
可以通过wireshark抓取网络数据包和单片机串口打印信息来判断CH395是否接受到该数据,图3示网络抓包和串口打印信息。

图3 数据监控
图中可以看出,电脑端192.168.1.21向224.1.1.4地址发送数据后,因程序里对socket的目的IP设置为广播地址,所以CH395接收到该数据包后会打印带有主机地址信息。其中len长为22的原因是程序设置socket为UDP Server模式,该模式下会带有信源的8个字节地址信息。为了更直观的判断CH395是否收到该数据,在该例程中调用了UDPSendto函数,CH395接受到该组播数据后会向原主机地址进行数据回传。可以在wires hark抓包图中第216行可以清晰看到CH395会向主机地址回传数据。
该例程测试是在直连电脑的情况下进行的,所以能够直观的接收到组播数据。但在更多的应用时,会发现我们电脑会时常发送一个组播请求的报文IGMP,而CH395并没有发送该报文,导致使用此例程可能无法在路由等网络环境对组播数据进行收发。
针对这个应用,我会在下一篇文章中做一个简单例程测试,让CH395在接入路由的环境下可以通过发送请求报文来加入组播段,解决无法接受组播数据的问题。
(测试例程)https://files.cnblogs.com/files/blogs/805237/Socket-UdpMulticast.rar?t=1700655709&download=true
【WCH以太网接口系列芯片】基于CH395的组播应用的更多相关文章
- 海思3516系列芯片SPI速率慢问题深入分析与优化(基于PL022 SPI 控制器)
海思3516系列芯片SPI速率慢问题深入分析与优化(基于PL022 SPI 控制器) 我在某个海思主控的项目中需要使用SPI接口来驱动一块液晶屏,液晶屏主控为 st7789,分辨率 240x240,图 ...
- nxp基于layerscape系列芯片的硬件型号解析
每一种layerscape系列芯片都有两种硬件型号: RDB 和QDS RDB: Refrence Design Board QDS: QorIQ Development system
- 以太网接口TCP/IP协议介绍,说的很容易懂了
以太网接口TCP/IP协议介绍,说的很容易懂了 TCP/IP协议,或称为TCP/IP协议栈,或互联网协议系列. TCP/IP协议栈(按TCP/IP参考模型划分) 应用层 FTP SMTP HTT ...
- [转帖]你不曾见过的国产CPU:可能是最全的龙芯系列芯片家谱(下)
你不曾见过的国产CPU:可能是最全的龙芯系列芯片家谱(下) https://www.ijiwei.com/html/news/newsdetail?source=pc&news_id=7177 ...
- Keil MDK STM32系列(九) 基于HAL和FatFs的FAT格式SD卡TF卡读写
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- Nacos系列:基于Nacos的配置中心
前言 在看正文之前,我想请你回顾一下自己待过的公司都是怎么管理配置的,我想应该会有以下几种方式: 1.硬编码 没有什么配置不配置的,直接写在代码里面,比如使用常量类 优势:对开发友好,开发清楚地知道代 ...
- STM32系列芯片命名规范
1.STM32的基础知识 STM32是意法半导体公司,基于ARM Cortex®-M0,M0+,M3, M4和M7内核生产的系列通用MCU.截止当前时间为止(20190515),STM32有STM32 ...
- Keil MDK STM32系列(三) 基于标准外设库SPL的STM32F407开发
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
随机推荐
- 极简工作流「GitHub 热点速览」
原以为 LLM 很难,但其实可以很简单,比如 Flowise 拖拽拖拽就能出来一个 LLM 流程,非常简单你的 LLM 就可以 run 起来了.同样的 web-check 也能极快速地帮你解决 Web ...
- SpringBoot3集成Kafka
目录 一.简介 二.环境搭建 1.Kafka部署 2.Kafka测试 3.可视化工具 三.工程搭建 1.工程结构 2.依赖管理 3.配置文件 四.基础用法 1.消息生产 2.消息消费 五.参考源码 标 ...
- Callback Function Essence
Include Example Input: I am a. route execute finish. I am b. route execute finish. What is Callback ...
- 4.4 C++ Boost 数据集序列化库
Boost 库是一个由C/C++语言的开发者创建并更新维护的开源类库,其提供了许多功能强大的程序库和工具,用于开发高质量.可移植.高效的C应用程序.Boost库可以作为标准C库的后备,通常被称为准标准 ...
- oracle导入导出某个schema数据
背景 公司之前部门拆分,但一些服务并没有拆分清楚.其中一个老服务,两个部门都在用,现在为了避免互相影响,决定克隆该服务.克隆就要克隆全套,当然也包括数据库,我们这个老服务,用的oracle,所以,就涉 ...
- Go,从命名开始!Go的关键字和标识符全列表手册和代码示例!
关注TechLeadCloud,分享互联网架构.云服务技术的全维度知识.作者拥有10+年互联网服务架构.AI产品研发经验.团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师, ...
- Go语言中匿名嵌套和类型嵌套的区别
在Go语言中,匿名嵌套结构体和与类型同名的嵌套结构体不是完全等价的,它们有一些重要的区别.以下是它们之间的主要区别: 字段访问: 匿名嵌套结构体:当你使用匿名嵌套结构体时,内部结构体的字段可以被直接访 ...
- Oracle中的substr()函数和INSTR()函数和mysql中substring_index函数字符截取函数用法:计算BOM系数用量拼接字符串*计算值方法
最近一直在研究计算产品BOM的成本系数,将拼接的元件用量拼接后拆分计算是个问题,后来受到大佬在mysql中截取字符串的启发在oracle中以substr和instr实现了 1.以下是我在mysql中 ...
- 一个Node.js的小爬虫
爬虫其实就是对网页内特定id.class.标签内容的提取,多是循环出来的,对我们爬取非常便利. 1.安装node node官网下载安装包安装,后在命令行工具中输入node -v查看node安装的版本. ...
- Unity anchoredPosition转localPosition
参考 https://zhuanlan.zhihu.com/p/119442308 在已经有结果的情况下,先捋一下unity对相关字段的注释就能得出很多公式 (rectMinPos表示左下角在父节点坐 ...