Description

Link.

给定 \(n\) 组坐标。构造长度为 \(m\) 的序列 \(\{c_n\}\) 和 \(n\) 组包含 LRUD 的路径,满足对于每一组坐标:

  • \(c_i\) 表示第 \(i\) 步「步长」。
  • 对于每个坐标,从 \((0,0)\) 开始走,共走 \(m\) 步。第 \(i\) 步可以让 \((x,y)\) 变成 \((x±c_i,y)\) 或 \((x,y±c_i)\) 。
  • 走完 \(m\) 次之后,恰好走到这组坐标。
  • 要求 \(m\leq 40,c_i\leq 10^{12}\) 。

Solution

好强的题啊。

先考虑无解的情况。

即是 \(x_{i}+y_{i}\) 的奇偶性不同的情况为无解。

仔细看 \(m\) 的限制疑似是 \(\log(x+y)\) 级别的,考虑二进制拆分。

于是考虑 \(\{2^{k}\}\) 可以凑出的坐标。

只考虑 1-dimension 的做法。

我们能够维护的地方就是 \(\sum_{i=0}^{k}2^{i}=2^{k+1}-1\)(这里算的是曼哈顿距离)。

那么这一定是个奇数,如果 \((x,y)\) 的曼哈顿距离是偶数就考虑换原点。

那么这就做完了。

full ver.

using i64 = long long;
using pii = std::pair<i64, i64>; std::vector<int> sL;
std::vector<std::string> dR;
std::pair<int, int> as[MAXN];
int n, wax[4], way[4];
char trans[4]; int main () {
std::ios::sync_with_stdio ( 0 ); std::cin.tie ( 0 ); std::cout.tie ( 0 );
std::cin >> n; initial ();
rep ( i, 1, n ) std::cin >> as[i].first >> as[i].second;
rep ( i, 2, n ) if ( ( as[i].first + as[i].second + as[i - 1].first + as[i - 1].second ) & 1 ) return ( puts ( "-1" ), 0 );
sL.push_back ( 1 );
rep ( i, 1, 30 ) sL.push_back ( 1 << i );
if ( ( ( as[1].first + as[1].second ) & 1 ) ^ 1 ) sL.push_back ( 1 );
std::reverse ( sL.begin (), sL.end () );
rep ( i, 1, n ) {
dR.push_back ( std::string () );
i64 curx = as[i].first, cury = as[i].second;
if ( ( ( curx + cury ) & 1 ) ^ 1 ) dR[i - 1].push_back ( 'U' ), cury --;
per ( j, 30, 0 ) rep ( k, 0, 3 ) {
i64 nxtx = curx + ( i64 )wax[k] * ( ONE64 << j );
i64 nxty = cury + ( i64 )way[k] * ( ONE64 << j );
if ( std::abs ( nxtx ) + std::abs ( nxty ) < ( ONE64 << j ) ) {
curx = nxtx, cury = nxty;
dR[i - 1].push_back ( trans[k] );
break;
}
}
}
std::cout << sL.size () << '\n';
for ( int p : sL ) std::cout << p << ' ';
std::cout << '\n';
for ( std::string p : dR ) std::cout << p << '\n';
return 0;
}

Solution -「ARC 103B」Robot Arms的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  3. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  4. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  5. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  6. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  7. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  8. Solution -「ARC 125E」Snack

    \(\mathcal{Description}\)   Link.   把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...

  9. Solution -「ARC 058C」「AT 1975」Iroha and Haiku

    \(\mathcal{Description}\)   Link.   称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...

  10. Solution -「ARC 101E」「AT 4352」Ribbons on Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...

随机推荐

  1. 2 大数据实战系列-spark shell wordcount

    1 启动spark shell cd /home/data/app/hadoop/spark-2.1.1-bin-hadoop2.7/bin ./spark-shell --master spark: ...

  2. Linux下Redis集群部署

    一.Redis集群介绍 Redis 集群是一个提供在多个Redis节点间共享数据的程序集.Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性 ...

  3. 除了参数,ref关键字还可以用在什么地方?

    <老生常谈:值类型 V.S. 引用类型>中花了很大的篇幅介绍ref参数针对值类型和引用类型变量的传递.在C#中,除了方法的ref参数,我们还有很多使用ref关键字传递引用/地址的场景,本篇 ...

  4. Python中使用支付宝支付

    准备 # 支付宝文档 https://opendocs.alipay.com/open/270/105898?pathHash=b3b2b667 # 在沙箱环境下实名认证 https://openho ...

  5. 探秘高逼格艺术二维码的制作过程-AI绘画图生图

    在之前的文章<AI制作艺术二维码-文生图>中,我介绍了一种直接通过提示词生成高逼格二维码的方法,但是通过提示词我们无法很好的控制生成图片的样式,特别是有些同学想要将自己的Logo或者头像附 ...

  6. 学习jQuery核心内容这一篇就够了

    jQuery 1. 介绍 jQuery是JavaScript的工具库,对原生JavaScript中的DOM操作.事件处理.数据处理等进行封装,提供更便捷的方法. 让我们用更少的代码完成我们的js操作 ...

  7. 使用react-test-renderer/shallow写测试

    我的项目是采用react + ts来写的,项目中要写单元测试,于是采用了Jest库,  主要用的package有 react-test-renderer react-test-renderer/sha ...

  8. Abaqus添加初始缺陷

    主要介绍通过施加节点位移的方法 步骤一: 复制model,新建Step,static linear perturbation Tools->Analytical Field 定义场函数,例如:A ...

  9. Java通用返回工具类Result

    通用返回类Result 前言:Java项目搭建时,常常需要去封装一个通用型的Result工具类,下面就是我自己封装的常用的返回类,可以直接使用.(有部分Swagger注解,使用时可忽略) 第一步.创建 ...

  10. 快速切换 nodejs 的版本

    最近在开发一个常驻进程.定时任务统一调度系统,以应对开发在进程管理方面遇到的各种复杂问题. 组里开发项目,一般来说是一个人承包整个项目,包括调度器设计,还有后台系统.我还有一部分工作,是队列相关的信息 ...