cf1250 M. SmartGarden

完全不会做 orz,在 cf 上看到了有趣的做法。

通读题意后可以发现是对于每一次操作,要求选出的行集合 \(R\) 和列集合 \(C\) 要满足如下条件:

\[(\forall r)(\forall c)(r \in R \wedge c \in C \wedge r \neq c \wedge r \neq c+1)
\]

接下来考虑二进制下对每一次操作如何取行集合和列集合。枚举二进制下每一位 \(i\),把所有当前位 \(i=0\) 的行 \(r\) 加入行集合 \(R\) 中,同时将所有当前位 \(i=1\) 以及 \(c+1\) 的当前位也为 \(i=1\) 的列 \(c\) 加入列集合 \(C\) 中,这样就是一次操作。反过来可以把所有当前位 \(i=1\) 的行 \(r\) 加入行集合 \(R\) 中,同时将所有当前位 \(i = 0\) 以及 \(c+1\) 的当前位也为 $i = 0 $ 的列 \(c\) 加入列集合 \(C\) 中,这样又是一次操作。这样共计 \(2 \cdot \lceil \log_2 5000 \rceil = 2 \cdot 13 = 26\) 次操作。这样的操作必定满足上面的条件。问题变为了如何填满漏选的地方。

观察一下列 \(c\) 的格式,可以发现其形如 \(XX...X011...1\) ,前面的 \(X\) 为固定位,后面的 \(011...1\) 为翻转位,\(c+1\) 与 \(c\) 的固定位相同,而翻转位每一位都不同。若 \((r,c)\) 漏选,可以得出 \(r\) 与 \(c\) 的固定位相同的结论。这是一个充要条件。

那么,枚举后面的翻转位的长度,并将所有翻转位都为该长度的列 \(c\) 加入本次的列集合 \(C\) 中。而关于行 \(r\) ,只要其二进制下与列 \(c\) 翻转位对应的位不为 \(011...1\) 或 \(100...0\) 即可满足条件。这样也会有 \(\lceil \log_2 5000 \rceil = 13\) 次操作。故最大操作数为 \(39\)。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
typedef double db;
typedef long double ld; #define IL inline
#define fi first
#define se second
#define mk make_pair
#define pb push_back
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define dbg1(x) cout << #x << " = " << x << ", "
#define dbg2(x) cout << #x << " = " << x << endl template<typename Tp> IL void read(Tp &x) {
x=0; int f=1; char ch=getchar();
while(!isdigit(ch)) {if(ch == '-') f=-1; ch=getchar();}
while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
x *= f;
}
int buf[42];
template<typename Tp> IL void write(Tp x) {
int p = 0;
if(x < 0) { putchar('-'); x=-x;}
if(x == 0) { putchar('0'); return;}
while(x) {
buf[++p] = x % 10;
x /= 10;
}
for(int i=p;i;i--) putchar('0' + buf[i]);
} const int N = 5000 + 5; int n;
vector<vector<int> > rows, cols; IL bool chkbit(int x, int p) { return (x & (1 << p)) > 0;} int main() {
#ifdef LOCAL
freopen("M.in", "r", stdin);
#endif
scanf("%d", &n);
for(int bt=0;bt<=1;bt++) {
for(int i=0; (1<<i) <= n; i++) {
vector<int> row, col;
for(int k=1;k<=n;k++) {
if(chkbit(k, i) == bt) row.push_back(k);
else if(k == n || chkbit(k+1, i) != bt) col.push_back(k);
} if(row.empty() || col.empty()) continue;
rows.push_back(row);
cols.push_back(col);
}
} for(int i=1; (1<<i)-1 <= n; i++) {
int flip = (1 << i) - 1;
int flip2 = (flip << 1) | 1;
int isrow = (1 << i);
vector<int> row, col;
for(int j=1;j<=n;j++) {
if((j & flip) == flip && (j & flip2) != flip2) col.push_back(j); // XX...X011...1
else if((j & flip2) != isrow) row.push_back(j);
}
if(col.empty() || row.empty()) continue; rows.push_back(row);
cols.push_back(col);
} printf("%d\n", SZ(rows));
for(int i=0;i<SZ(rows);i++) {
printf("%d ", SZ(rows[i]));
for(int j=0;j<SZ(rows[i]);j++) {
printf("%d%c", rows[i][j], " \n"[j == SZ(rows[i]) - 1]);
}
printf("%d ", SZ(cols[i]));
for(int j=0;j<SZ(cols[i]);j++) {
printf("%d%c", cols[i][j], " \n"[j == SZ(cols[i]) - 1]);
}
}
return 0;
}

2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) M. SmartGarden 题解的更多相关文章

  1. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)【A题 类型好题】

    A. Berstagram Polycarp recently signed up to a new social network Berstagram. He immediately publish ...

  2. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) D. Firecrackers (贪心,二分)

    题意:有个长度为\(n\)的监狱,犯人在位置\(a\),cop在位置\(b\),你每次可以向左或者向右移动一个单位,或者选择不动并在原地放一个爆竹\(i\),爆竹\(i\)在\(s[i]\)秒后爆炸, ...

  3. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) C. Berpizza (STL)

    题意:酒吧里有两个服务员,每个人每次都只能服务一名客人,服务员2按照客人进酒吧的顺序服务,服务员3按照客人的钱来服务,询问\(q\),\(1\)表示有客人进入酒吧,带着\(m\)块钱,\(2\)表示询 ...

  4. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest

    目录 Contest Info Solutions A. Berstagram B. The Feast and the Bus C. Trip to Saint Petersburg E. The ...

  5. 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    A. Find a Number 找到一个树,可以被d整除,且数字和为s 记忆化搜索 static class S{ int mod,s; String str; public S(int mod, ...

  6. 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) Solution

    A. Find a Number Solved By 2017212212083 题意:$找一个最小的n使得n % d == 0 并且 n 的每一位数字加起来之和为s$ 思路: 定义一个二元组$< ...

  7. Codeforces1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)总结

    第一次打ACM比赛,和yyf两个人一起搞事情 感觉被两个学长队暴打的好惨啊 然后我一直做傻子题,yyf一直在切神仙题 然后放一波题解(部分) A. Find a Number LINK 题目大意 给你 ...

  8. codeforce1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) 题解

    秉承ACM团队合作的思想懒,这篇blog只有部分题解,剩余的请前往星感大神Star_Feel的blog食用(表示男神汉克斯更懒不屑于写我们分别代写了下...) C. Cloud Computing 扫 ...

  9. 2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    A 思路: 贪心,每次要么选两个最大的,要么选三个,因为一个数(除了1)都可以拆成2和3相加,直到所有的数都相同就停止,这时就可以得到答案了; C: 二分+bfs,二分答案,然后bfs找出距离小于等于 ...

  10. 2014-2015 ACM-ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)

    I. Sale in GameStore(贪心) time limit per test 2 seconds memory limit per test 512 megabytes input sta ...

随机推荐

  1. Java Collection接口下的“ List 集合” 与 “ Set 集合 ”

    Java Collection接口下的" List 集合" 与 " Set 集合 " 每博一文案 一个人最好的底牌,就这两个字: 靠谱,是最高级的聪明. 师父说 ...

  2. JAVA基础-流程控制、字符串

    一.java基础 1.java主类结构 package com.study.again001; 包名public class helloword { 类名 static String s1 = &qu ...

  3. Linux(一):Linux操作系统

    Linux(一):Linux操作系统 对于我们编程人员来讲,linux对于我们几乎已经是像windows对于普通用户一样,好像和同行交流说不会linux就像说不会用计算机一样羞耻.这里打算从头开始温故 ...

  4. ctfshow_web_1(困难题)

    CTFshow web1(困难题) 根据前面做题经验,看见登录框基本都是跑一下爆破,弱口令等等 这里用 dirmap 目录爆破爆出来有一个 www.zip 把他下载下来 看了 login.php 和 ...

  5. 4G EPS 中的 PLMN 选择

    目录 文章目录 目录 前文列表 PLMN 选择 前文列表 <4G EPS 中的系统消息类型> PLMN 选择 UE 开机后的第一件事情就是完成小区搜索,即完成和 eNB 的牵手.在牵手成功 ...

  6. java学习之旅(day.22)

    CSS 前端三要素:HTML.CSS.javaScript ​ 结构 表现 交互 相当于骨头,表皮 ,血肉吧 如何学习CSS CSS是什么 CSS怎么用(快速入门) CSS选择器(重点+难点) 美化网 ...

  7. java学习之旅(day.06)

    switch多选择结构 多选择结构还有一个实现方式就是switch case switch case 语句判断一个变量与一系列值中某个值是否相等,每个值称为一个分支 switch(expression ...

  8. CMD程序_WordCount_博客改

    程序简介 这个程序只能以命令行的方式启动,在启动时要输入相应的命令.程序的功能是对文本文件的字符数,单词数,行数进行统计,将结果输出到默认文件或指定文件. 码云项目链接:WordCount 程序结构 ...

  9. 使用 Spacesniffer 找回 48G 系统存储空间的总结

    前言 Spacesniffer 是一个免费的文件扫描工具,通过使用树状图可视化布局,可以立即了解大文件夹的位置,帮助用户处理找到这些文件夹 当前系统C盘空间 清理后系统C盘空间 下载 Spacesni ...

  10. T2T-ViT:更多的局部结构信息,更高效的主干网络 | ICCV 2021

    论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性.在ImageN ...