Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 1556 Accepted: 457

Description

After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ashore on a foggy island. Though he was exhausted and despaired, he was still fortunate to remember a legend of the foggy island, which he had heard from patriarchs in his childhood. This must be the island in the legend. In the legend, two tribes have inhabited the island, one is divine and the other is devilish, once members of the divine tribe bless you, your future is bright and promising, and your soul will eventually go to Heaven, in contrast, once members of the devilish tribe curse you, your future is bleak and hopeless, and your soul will eventually fall down to Hell.

In order to prevent the worst-case scenario, Akira should distinguish the devilish from the divine. But how? They looked exactly alike and he could not distinguish one from the other solely by their appearances. He still had his last hope, however. The members of the divine tribe are truth-tellers, that is, they always tell the truth and those of the devilish tribe are liars, that is, they always tell a lie.

He asked some of them whether or not some are divine. They knew one another very much and always responded to him "faithfully" according to their individual natures (i.e., they always tell the truth or always a lie). He did not dare to ask any other forms of questions, since the legend says that a devilish member would curse a person forever when he did not like the question. He had another piece of useful informationf the legend tells the populations of both tribes. These numbers in the legend are trustworthy since everyone living on this island is immortal and none have ever been born at least these millennia.

You are a good computer programmer and so requested to help Akira by writing a program that classifies the inhabitants according to their answers to his inquiries.

Input

The input consists of multiple data sets, each in the following format :

n p1 p2

xl yl a1

x2 y2 a2

...

xi yi ai

...

xn yn an

The first line has three non-negative integers n, p1, and p2. n is the number of questions Akira asked. pl and p2 are the populations of the divine and devilish tribes, respectively, in the legend. Each of the following n lines has two integers xi, yi and one word ai. xi and yi are the identification numbers of inhabitants, each of which is between 1 and p1 + p2, inclusive. ai is either yes, if the inhabitant xi said that the inhabitant yi was a member of the divine tribe, or no, otherwise. Note that xi and yi can be the same number since "are you a member of the divine tribe?" is a valid question. Note also that two lines may have the same x's and y's since Akira was very upset and might have asked the same question to the same one more than once.

You may assume that n is less than 1000 and that p1 and p2 are less than 300. A line with three zeros, i.e., 0 0 0, represents the end of the input. You can assume that each data set is consistent and no contradictory answers are included.

Output

For each data set, if it includes sufficient information to classify all the inhabitants, print the identification numbers of all the divine ones in ascending order, one in a line. In addition, following the output numbers, print end in a line. Otherwise, i.e., if a given data set does not include sufficient information to identify all the divine members, print no in a line.

Sample Input

2 1 1
1 2 no
2 1 no
3 2 1
1 1 yes
2 2 yes
3 3 yes
2 2 1
1 2 yes
2 3 no
5 4 3
1 2 yes
1 3 no
4 5 yes
5 6 yes
6 7 no
0 0 0

Sample Output

no
no
1
2
end
3
4
5
6
end

Source

Japan 2002 Kanazawa

思路:

没做出来,借鉴下dalao的思路,得慢慢磨了

那么如果一个人说另一个人是好人,那么如果这个人是好人,说明 对方确实是好人,如果这个是坏人,说明这句话是假的,对方也是坏人。

如果一个人说另一个人是坏人,那么如果这个人是好人,说明对方是坏人,如果这个是坏人,说明 对方是好人。

也就是如果条件是yes说明这两个是相同集合的,否则是两个不同的集合。

用r[i]表示i结点与根结点的关系,0为相同集合,1为不同集合。这是一个经典的并查集问题。

这样处理之后,还需要判断是否唯一

我们通过并查集,可以将所有人分为若干个集合,其中对于每一个集合,又分为两个集合(好人和坏人,但是不知道哪些是好人,哪些是坏人,我们只有相对关系)

接下来就是从所有大集合中的两个小集合取一个,组成好人集合,判断是否唯一。

背包问题,dp[i][j]表示前i个大集合,好人为j个的方案有多少种,或者dp[i][j]表示当前好人i个,坏人j个的情况有多少种

如果dp[cnt][p1]!=1说明方案不唯一,或者无解

输出方案就是加个pre数组,从后往前递推呢。

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <vector>
#include <string>
using namespace std; const int MAXN = 610;
int F[MAXN];
int val[MAXN];
int find(int x)
{
if (F[x] == -1)return x;
int tmp = find(F[x]);
val[x] += val[F[x]];
val[x] %= 2;
return F[x] = tmp;
}
int a[MAXN][2];//a[i][0],a[i][1]表示每个大集合分成两部分的个数
vector<int>b[MAXN][2];
bool used[MAXN];
int dp[MAXN][MAXN / 2];
int pre[MAXN][MAXN / 2];
int main()
{
int n, p1, p2;
while (scanf("%d%d%d", &n, &p1, &p2) == 3)
{
if (n == 0 && p1 == 0 && p2 == 0)break;
memset(F, -1, sizeof(F));
memset(val, 0, sizeof(val));
int u, v;
char str[10];
while (n--)
{
scanf("%d%d%s", &u, &v, &str);
int tmp;
if (str[0] == 'y')//相同
tmp = 0;
else tmp = 1;//相反
int t1 = find(u), t2 = find(v);
if (t1 != t2)
{
F[t1] = t2;
val[t1] = (val[v] - val[u] + tmp + 2) % 2;
}
}
for (int i = 0; i < MAXN; i++)
{
b[i][0].clear();
b[i][1].clear();
a[i][0] = 0;
a[i][1] = 0;
}
memset(used, false, sizeof(used));
int cnt = 1;
for (int i = 1; i <= p1 + p2; i++)
if (!used[i])
{
int tmp = find(i);
for (int j = i; j <= p1 + p2; j++)
{
if (find(j) == tmp)
{
used[j] = true;
b[cnt][val[j]].push_back(j);
a[cnt][val[j]]++;
}
}
cnt++;
}
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 1; i < cnt; i++)
{
for (int j = p1; j >= 0; j--)
{
if (j - a[i][0] >= 0 && dp[i - 1][j - a[i][0]])
{
dp[i][j] += dp[i - 1][j - a[i][0]];
pre[i][j] = j - a[i][0];
} if (j - a[i][1] >= 0 && dp[i - 1][j - a[i][1]])
{
dp[i][j] += dp[i - 1][j - a[i][1]];
pre[i][j] = j - a[i][1];
} }
}
if (dp[cnt - 1][p1] != 1)
{
printf("no\n");
}
else
{
vector<int>ans;
ans.clear();
int t = p1;
//printf("%d\n",cnt); for (int i = cnt - 1; i >= 1; i--)
{
int tmp = t - pre[i][t];
//printf("%d\n",i);
//printf("%d %d\n",t,tmp);
if (tmp == a[i][0])
{
for (int j = 0; j < a[i][0]; j++)
ans.push_back(b[i][0][j]);
}
else
{
for (int j = 0; j < a[i][1]; j++)
ans.push_back(b[i][1][j]);
}
t = pre[i][t];
} sort(ans.begin(), ans.end());
for (int i = 0; i < ans.size(); i++)
printf("%d\n", ans[i]);
printf("end\n");
} }
return 0;
}

POJ 1417 True Liars (并查集+DP)的更多相关文章

  1. POJ1417 True Liars —— 并查集 + DP

    题目链接:http://poj.org/problem?id=1417 True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  2. POJ 1417 - True Liars - [带权并查集+DP]

    题目链接:http://poj.org/problem?id=1417 Time Limit: 1000MS Memory Limit: 10000K Description After having ...

  3. POJ 1417 True Liars(种类并查集+dp背包问题)

    题目大意: 一共有p1+p2个人,分成两组,一组p1,一组p2.给出N个条件,格式如下: x y yes表示x和y分到同一组,即同是好人或者同是坏人. x y no表示x和y分到不同组,一个为好人,一 ...

  4. POJ 1417 True Liars

    题意:有两种人,一种人只会说真话,另一种人只会说假话.只会说真话的人有p1个,另一种人有p2个.给出m个指令,每个指令为a b yes/no,意思是,如果为yes,a说b是只说真话的人,如果为no,a ...

  5. POJ1417 True Liars 并查集 动态规划 (种类并查集)

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ1417 题意概括 有一群人,p1个好人,p2个坏人. 他们说了n句话.(p1+p2<=600,n ...

  6. poj1417 True Liars[并查集+背包]

    有一点小转化的题,在设计dp状态时还是有点费脑筋的. 地址. 依题意,首先可以知道肯定要扩展域的并查集(明摆着的嘛).一个"好人"域,一个"坏人"域,每句话分两 ...

  7. poj 1417 True Liars(并查集+背包dp)

    题目链接:http://poj.org/problem?id=1417 题意:就是给出n个问题有p1个好人,p2个坏人,问x,y是否是同类人,坏人只会说谎话,好人只会说实话. 最后问能否得出全部的好人 ...

  8. poj1417(种类并查集+dp)

    题目:http://poj.org/problem?id=1417 题意:输入三个数m, p, q 分别表示接下来的输入行数,天使数目,恶魔数目: 接下来m行输入形如x, y, ch,ch为yes表示 ...

  9. POJ 1417 并查集 dp

    After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ...

  10. 【POJ1417】【带标记并查集+DP】True Liars

    Description After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was ...

随机推荐

  1. React 中常用技术

    可以少去理解一些不必要的概念,而多去思考为什么会有这样的东西,它解决了什么问题,或者它的运行机制是什么? 1. React 中导出和导入 1.1 ES6 解析 ES6 的模块化的基本规则或特点: 每一 ...

  2. 探索 Web API:SpeechSynthesis 与文本语言转换技术

    一.引言 随着科技的不断发展,人机交互的方式也在不断演变.语音识别和合成技术在人工智能领域中具有重要地位,它们为残障人士和日常生活中的各种场景提供了便利.Web API 是 Web 应用程序接口的一种 ...

  3. 两道题浅析PHP反序列化逃逸

    两道题浅析PHP反序列化逃逸 一.介绍 反序列化逃逸的出现是因为php反序列化函数在进行反序列化操作时,并不会审核字符串中的内容,所以我们可以操纵属性值,使得反序列化提前结束. 反序列化逃逸题一般都是 ...

  4. Jupyter Notebook 使用与安装

    简介 Jupyter Notebook就是以网页的形式打开,可以在网页页面中直接编写代码和运行代码,代码的运行结果也会直接在代码块下显示的程序.如在编程过程中需要编写说明文档,可在同一个页面中直接编写 ...

  5. [ARC165E] Random Isolation

    Problem Statement There is a tree with $N$ vertices numbered $1$ to $N$. The $i$-th edge connects ve ...

  6. Net 高级调试之十三:托管堆的几个经典破坏问题

    一.介绍 今天是<Net 高级调试>的第十三篇文章,这篇文章写作时间的跨度有点长.这篇文章我们主要介绍 经典的案例,如何查找问题,如何解决问题,最重要我们看到了问题,要有解决的思路,没有思 ...

  7. Http请求超好用的工具类

    话题不多说,直接开整 1.先导入依赖 <dependency> <groupId>io.github.admin4j</groupId> <artifactI ...

  8. --{module_name}_binary_host_mirror和--{module_name}_binary_site

    --{module_name}_binary_host_mirror和--{module_name}_binary_site demo // .npmrc文件 sass_binary_site=htt ...

  9. 痞子衡嵌入式:在i.MXRT1170上快速点亮一款全新LCD屏的方法与步骤(MIPI DSI接口)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是在i.MXRT1170上快速点亮一款全新LCD屏的方法与步骤. 我们知道 LCD 屏的接口有很多:DPI-RGB.MIPI DSI.DB ...

  10. ClickHouse的JOIN算法选择逻辑以及auto选项

    ClickHouse的JOIN算法选择逻辑以及auto选项 ClickHouse中的JOIN的算法有6种: Direct; Partial merge; Hash; Grace hash; Full ...